Welcome to CAMS
The Center for Applied Mathematical Sciences is an organized research unit
based in the Department of Mathematics
at USC.
The purpose of CAMS is to foster research and graduate education in
Mathematics in a broad sense and in an interdisciplinary mode. One goal
of the center's participants is to facilitate and encourage the development of
applicable mathematics and its utilization in problems in engineering and the
sciences.
The mission of the Center is threefold.
 To maintain USC's position as an internationallyrecognized center in
several important and well defined areas of mathematics and its applications
 To be a muchneeded interface between the Department of Mathematics and
other USC departments and institutions outside USC.
 To serve as a catalyst in the development of stateoftheart
activities in applicable mathematics at USC.
CAMS Prize Winners
Winners of the CAMS Graduate Student Prize for Excellence in Research with a Substantial Mathematical Component.
Anand Kumar Narayanan 
Ibrahim Ekren 
Sushmita Allam 
WanJung Kuo 
Yang Huang 





Computer Science 
Mathematics 
Biomedical Engineering 
Physics 
Mathematics 





Upcoming Colloquium
3:30 PMKAP 414

David Levermore
University of Maryland
Monday, November 10

Scattering Theory for the Boltzmann Equation and the Arrow of Time (joint work with Claude Bardos, Irene Gamba, and Francois Golse)
We develop a scattering theory for a class of eternal solutions of the Boltzmann equation posed over all space. In three spatial dimensions each of these solutions has thirteen conserved quantities. The Boltzmann entropy has a unique minimizer with the same thirteen conserved values. This minimizer is a local Maxwellian that is also a global solution of the Boltzmann equation  a socalled global Maxwellian. We show that each...


Upcoming Colloquium
3:30 PMKAP 414

Inwon Kim
UCLA
Monday, November 17

Congested crowd motion and Quasistatic evolution
In this talk we investigate the relationship between a quasistatic evolution and a transport equation with a drift potential, where the density is transported with a constraint on its maximum. The latter model, in a simplified setting, describes the congested crowd motion with a density constraint. When the drift potential is convex, the crowd density is likely to aggregate, and thus if the initial density starts as a patch (i.e....


Upcoming Colloquium
Special Time3:00 PMKAP 414

Ngoc Mai Tran
University of Texas
Friday, November 21

Special Colloquium: Random permutations and random partitions
I will talk about various problems related to random permutations and random partitions. In particular, I discuss sizebiased permutations, which have applications to statistical sampling. Then I will talk about random partitions obtained from projections of polytopes. These are related to random polytopes and zeros of random tropical polynomials.


Upcoming Colloquium
Special Time4:30 PMKAP 414

Joseph Neeman
University of Texas
Friday, November 21

Special Colloquium: Gaussian noise stability
Given two correlated Gaussian vectors, X and Y, the noise stability of a set A is the probability that both X and Y fall in A. In 1985, C. Borell proved that halfspaces maximize the noise stability among all sets of a given Gaussian measure. We will give a new, and simpler, proof of this fact, along with some extensions and applications. Specifically, we will discuss hitting times for the OrnsteinUhlenbeck process, and a noisy...



