University of Southern California Sat. Oct. 25, 2014 
 
Home IntroductionObjectivesResearchFaculty and StaffNews and EventsResources

Faculty
Associates / Fellows
Advisory Board
Home


Barry C. Thompson

Assistant Professor of Chemistry

Office: LHI 105
Phone: (213) 821-2656
Fax: (213) 740-6679
Email: barry.thompson@usc.edu
  Group Homepage
  College Website

 

 

Research Focus

 

My research program is devoted to the development of fundamental structure-function relationships in electronic polymers. The primary focus is to gain a deeper understanding of the effects of supramolecular organization on electronic and optical properties and how the organization of electroactive organic materials on the nanometer length scale can be optimized to control desired properties. Such fundamental work is combined with a focus on developing new materials for application in solar energy conversion.

Polymer-Based Solar Cells

Polymer-fullerene based photovoltaic devices have attracted a great deal of attention based on the potential for realizing low-cost, solution processable, and flexible solar cells. Recently, power conversion efficiencies of ~5% have been reported for the poly(3-hexylthiophene)/[6,6]-phenyl-C61 butyric acid methyl ester (P3HT:PCBM) bulk heterojunction solar cell. There is a great deal of interest in my group in developing new materials that will lead to polymer based solar cells with improved performance and enhanced stability. Work is focused on synthesizing new polymers and understanding how the chemical structure of the polymer influences electronic, physical, and materials properties.

Supramolecular Assembly of Electroactive Polymers

Semiconducting polymers have received a great deal of attention for potential applications in light emitting diodes (LEDs) and photovoltaic devices (PVDs). In such cases, electronic function is contingent on the interaction of two or more semiconducting materials. Specifically, in PVDs, donor and acceptor materials must work together in order to effectively harvest light, generate charge carriers, and transport charge. One of the most effective means for assembling two or more materials on the nanometer length scale is via the use of block copolymers, which are known to assemble in highly organized morphologies. However, a general platform for semiconducting block copolymers that allows organized assembly of two or more electroactive components has not been developed. As such, the development of new semiconducting block copolymers is a major focus of research in my group.

References

 
1. Thompson, B. C.; Frιchet, J. M. J.  “Polymer-Fullerene Composite Solar Cells,” Angew. Chem. Int. Ed. 2008, 47, 58-77.
2. Kim, Y.-G.; Christian-Pandya, H.; Ananthakrishnan, N.; Niazimbetova, Z. I.; Thompson, B. C.: Galvin, M. E.; Reynolds, J. R. “p-OXA-X: A New Oligo Photosensitizer for Organic Solar Cells,” Sol. Energy Mat. Sol. Cells 2008, 92, 307-312.
3. Thompson, B. C.; Kim, B. J.; Kavulak, D. F.; Sivula, K.; Mauldin, C.; Frιchet, J. M. J. “Influence of Alkyl Substitution Pattern in Thiophene Copolymers on Composite Fullerene Solar Cell Performance,” Macromolecules 2007, 40, 7425-7428.
4. Kim, Y.-G.; Galand, E.; Thompson, B. C.; Walker, J.; Fossey, S. A.; McCarley, T. D.; Abboud, K. A.; Reynolds, J. R. J. “Isoregic Thienylene-Phenylene Polymers: The Effects of Structural Variation and Application to Photovoltaic Devices,”  Macromol. Sci.Part A: Pure Appl. Chem. 2007, 44, 665-674.
5. Sivula, K.; Luscombe, C. K.; Thompson, B. C.; Frιchet, J. M. J. “Enhancing the Thermal Stability of Polythiophene:Fullerene Solar Cells by Decreasing Effective Polymer Regioregularity,” J. Am. Chem. Soc.  2006, 128, 13988-13989.
6. Thompson, B. C.; Kim, Y.-G.; McCarley, T. D.; Reynolds, J. R. “Soluble Narrow Band Gap and Blue Propylenedioxythiophene-Cyanovinylene Polymers as Multifunctional Materials for Photovoltaic and Electrochromic Applications,” J. Am. Chem. Soc. 2006, 128, 12714-12725.
7. Campos, L. M.; Mozer, A. J.; Gunes, S.; Winder, C.; Neugebauer, H.; Sariciftci, N. S.; Thompson, B. C.; Reeves, B. D.; Grenier, C. R. G.; Reynolds, J. R. “Photovoltaic Activity of a PolyProDOT Derivative in a Bulk Heterojunction Solar Cell,” Sol. Energy Mat. Sol. Cells 2006, 90, 3531-3546.
8. Kim, Y.-G.; Thompson, B. C.; Ananthakrishnan, N, Padmanaban, G.; Ramakrishnan, S.; Reynolds, J. R. “Variable Band Gap Conjugated Polymers for Optoelectronic and Redox Applications,” J. Mater. Res. 2005, 20, 3188-3198.
9. Thompson, B. C.; Abboud, K. A.; Reynolds, J. R.; Nakatani, K.; Audebert, P. “Electrochromic Conjugated N-salicylidene-Aniline (Anil) Functionalized Pyrrole and 2,5-Dithienylpyrrole-Based Polymers,” New J. Chem. 2005, 29, 1128-1134.
10. Thompson, B. C.; Kim, Y.-G.; Reynolds, J. R. “Spectral Broadening in MEH-PPV:PCBM-Based Photovoltaic Devices via Blending with a Narrow Band Gap Cyanovinylene-Dioxythiophene Polymer,” Macromolecules 2005, 38, 5359-5362.
11. Thompson, B. C.; Madrigal, L. G.; Pinto, M. R.; Kang, T.-S.; Schanze, K. S.; Reynolds, J. R. “Donor-Acceptor Copolymers for Red- and Near-Infrared-Emitting Polymer Light-Emitting Diodes,” J. Polym. Sci.: Part A: Polym. Chem. 2005, 43, 1417-1431.
12. Argun, A. A.; Aubert, P.-H.; Thompson, B. C.; Schwendeman, I.; Gaupp, C. L.; Hwang, J.; Pinto, N. J.; Tanner, D. B.; MacDiarmid, A. G.; Reynolds, J. R. “Multicolored Electrochromism in Polymers: Structures and Devices,” Chem. Mater. 2004, 16, 4401-4412.
13. Welsh, D. M.; Kloeppner, L. J.; Madrigal, L.; Pinto, M. R.; Thompson, B. C.; Schanze, K. S.; Abboud, K. A.; Powell, D.; Reynolds, J. R. “Regiosymmetric Dibutyl-Substituted Poly(3,4-propylenedioxythiophene)s as Highly Electron-Rich Electroactive and Luminescent Polymers,” Macromolecules 2002, 35, 6517-6525.
14. Reeves, B. D.; Thompson, B. C.; Abboud, K. A.; Smart, B. E.; Reynolds, J. R. “Dual Cathodically and Anodically Coloring Electrochromic Polymer Based on a Spiro Bipropylenedioxythiophene [poly(spiroBiProDOT)]Adv. Mater. 2002, 14, 717-719.
15. Thompson, B. C.; Schottland, P.; Sonmez, G.; Reynolds, J. R. “In situ Colorimetric Analysis of Electrochromic Polymer Films and Devices,” Synth. Met. 2001, 119, 333-334.
16. Schottland, P.; Zong, K.; Gaupp, C. L.; Thompson, B. C.; Thomas, C. A.; Giurgiu, I.; Hickman, R.; Abboud, K. A.; Reynolds, J. R. “Poly(3,4-alkylenedioxypyrrole)s: Highly Stable Electronically Conducting and Electrochromic Polymers,” Macromolecules 2000, 33, 7051-7061.
17.  Thompson, B. C.; Schottland, P.; Zong, K.; Reynolds, J. R. “In Situ Colorimetric Analysis of Electrochromic Polymers and Devices,” Chem. Mater. 2000, 12, 1563-1571.
18. Wang, F.; Wison, M. S.; Rauh, R. D.; Schottland, P.; Thompson, B. C.; Reynolds, J. R. “Electrochromic Linear and Star Branched Poly(3,4-ethylenedioxythiophene-didodecyloxybenzene) Polymers,” Macromolecules 2000, 33, 2083-2091.
19. Gaupp, C. L.; Zong, K.; Schottland, P.; Thompson, B. C.; Thomas, C. A.; Reynolds, J. R. “Poly(3,4-ethylenedioxypyrrole): Organic Electrochemistry of a Highly Stable Electrochromic Polymer,” Macromolecules 2000, 33, 1132-1133.

(c) 2014 Loker Hydrocarbon Institute