RECOMBINANT RETROVIRUS PSEUDOTYPED WITH A E2 ALPHAVIRUS GLYCOPROTEIN

Applicant: California Institute of Technology, Pasadena, CA (US)

Inventors: Pin Wang, Arcadia, CA (US); Lili Yang, Arcadia, CA (US); David Baltimore, Pasadena, CA (US)

Assignee: California Institute of Technology, Pasadena, CA (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. This patent is subject to a terminal disclaimer.

Appl. No.: 13/887,008
Filed: May 6, 2013

Priority Data

Related U.S. Application Data
Continuation of application No. 12/688,689, filed on Jan. 15, 2010, now Pat. No. 8,715,640, which is a continuation of application No. 11/781,865, filed on Jul. 23, 2007, now Pat. No. 8,329,162.

Provisional application No. 60/832,497, filed on Jul. 21, 2006, provisional application No. 60/920,260, filed on Mar. 27, 2007.

Int. Cl.
A01N 63/00 (2006.01)
A01N 65/00 (2009.01)
A61K 48/00 (2006.01)
C12N 5/00 (2006.01)

US Patents
USP 6,627,442 B1 9/2003 Humeau et al.
USP 6,734,014 B1 5/2004 Hwu et al.
USP 6,830,892 B2 12/2004 Marasco et al.
USP 7,604,802 B2 10/2009 O'Hagan et al.
USP 7,611,712 B2 11/2009 Karp
USP 9,007,065 B1 10/2010 Cao et al.
USP 2005/0015358 A1 1/2005 Spencer et al.
USP 2008/0033682 A1 1/2008 Lois-Caballe et al.
USP 2008/0199998 A1 1/2008 Wang et al.

FOREIGN PATENT DOCUMENTS
WO WO-00/09730 A2 2/2000
WO WO-00/61772 A2 10/2000

OTHER PUBLICATIONS

Primary Examiner — Michael C. Wilson
Attorney, Agent, or Firm — Marshall, Gerstein & Borun LLP

ABSTRACT
Methods and compositions are provided for delivery of a polynucleotide encoding a gene of interest, typically an antigen, to a dendritic cell (DC). The virus envelope comprises a DC-SIGN specific targeting molecule. The methods and related compositions can be used to treat patients suffering from a wide range of conditions, including infection, such as HIV/AIDS, and various types of cancers.

20 Claims, 27 Drawing Sheets
References Cited

FOREIGN PATENT DOCUMENTS

WO WO-2008/011836 A2 1/2008

OTHER PUBLICATIONS

Bonifaz et al., Efficient targeting of protein antigen to the dendritic cell receptor DEC-205 in the steady state leads to antigen presentation on major histocompatibility complex class I products and peripheral CD8+ T cell tolerance. J. Exp. Med., 196: 1627-38 (2002).
Branch, A good antigen molecule is hard to find. TIBS, 23: 45-50 (1998).
References Cited

OTHER PUBLICATIONS

Heidner et al., Lethality of PE2 incorporation into Sindbis virus can be suppressed by second-site mutation in E3 and E2. J. Virol. 68: 2683-92 (1994).

(56) References Cited

OTHER PUBLICATIONS

Lutzko et al., Lentivirus vectors incorporating the immunoglobin heavy chain enhancer and matrix attachment regions provide position-independent expression in B lymphocytes. *J. Virol.* 77: 7341-51 (2003).

(56)

References Cited

OTHER PUBLICATIONS

Stricker et al., The immunogen and AIDs vaccines, *Medical Hypothe-

Figure 1

Sindbis Virus (SV) → wild-type SV glycoprotein (SVG)

SVG: recognizes two viral receptors

E3 E2 6K E1

Engineer SVG to be SVGmu

SVGmu: recognizes one viral receptor

E3 E2 6K E1

alternations to disable its recognition to heparan sulfate

DC-SIGN retained

transduce multiple cell types

FUGW/SVG

selectively transduce DC

FUGW/SVGmu

envelope lentivector

envelope lentivector
Figure 3B
Figure 5
mouse #1: no tumor
mouse #2: tumor (5 x 10^6 EG7Luc cells)
mouse #3: tumor (5 x 10^6 EG7Luc cells)
Figure 23

-FN (Inter)

FOVA/SVGmu

0.14

FUGW/SVGmu

0.28

no imm.

0.12

no OVA

0.23

CD8
RECOMBINANT RETROVIRUS PSEUDOTYPED WITH A E2 ALPHAVIRUS GLYCOPROTEIN

CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 11/781,865, filed Jul. 23, 2007, which claims priority under 35 U.S.C. §119(e) to U.S. Provisional Application No. 60/832,497, filed Jul. 21, 2006 and U.S. Provisional Application No. 60/920,260, filed Mar. 27, 2007, each of which is herein incorporated by reference.

STATEMENT REGARDING FEDERALLY SPONSORED R&D

The invention was made with government support under Grant No. AI068978 awarded by the National Institutes of Health. The government has certain rights in the invention.

REFERENCE TO SEQUENCE LISTING

The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled “46433E_SubSeqList.txt”, created Jun. 4, 2014, which is 143,352 bytes in size. The information in the electronic format of the Sequence Listing is incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

The invention relates generally to targeted gene delivery, and more particularly to the use of a recombinant virus comprising a targeting molecule that targets and binds dendritic cells and can thus be used for dendritic cell vaccination.

Immunization is one of the most productive tools in modern medical practice but remains burdened by limitations. Certain infectious diseases such as HIV/AIDS, malaria, and tuberculosis are not currently controlled at all by immunization, while other infectious diseases are controlled by complex immunization regimens. Cancer is a promising target for immunotherapeutic treatments, but clinical outcomes in experimental trials have been disappointing (Rosenberg, S. A. et al. 2004. Nat. Med. 10:909-915, which is incorporated herein by reference in its entirety). Novel methods of immunization are needed, for example, to reliably induce antitumor immunity.

Dendritic cells (DCs) play critical roles in both innate and adaptive immunity. DCs are specialized antigen-presenting cells with the unique capability to capture and process antigens, migrate from the periphery to lymphoid organs, and present the antigens to resting DC cells in a major histocompatibility complex (MHC)-restricted fashion (Banchereau, J. & Steinman, R. M. 1998. Nature 392:245-252; Steinman, R. M., et al. 2003. Ann Rev Immunol 21: 685-711, each of which is incorporated herein by reference in its entirety). These cells are derived from bone marrow (BM) and are characterized by dendritic morphology and high mobility. Immature DCs are adept at antigen ingestion and are distributed as sentinel cells in peripheral tissue throughout the body. However, maturation of DCs is required in order to mount an efficient immune response (Steinman, R. M., et al. 2003. supra). The mature DCs express high levels of MHC-antigen complex and other costimulatory molecules (such as CD40, B7-1, B7-2 and CD1a) (Steinman, R. M. 1991. Ann Rev Immunol 9: 271-296, which is incorporated herein by reference in its entirety, Banchereau, J. and R. M. Steinman. 1998, supra). These molecules play key roles in stimulating T cells.

The discovery of the role of DCs as specialized antigen-presenting cells (APCs) has fueled attempts at DC-based immunization/vaccination that involve loading DCs with specific antigens (Banchereau, J. & Palucka, A. K. 2005. Nat. Rev. Immunol. 5:296-306; Figdor, C. G. et al. 2004. Nat. Med. 10:475-480, each of which is incorporated herein by reference in its entirety). However, all of these attempts involve ex vivo loading of DCs with specific antigens. Ex vivo generated DCs are then administered to the patient. Ex vivo generation of DCs for each patient is extremely laborious and time-consuming. By contrast, the present invention is directed inter alia to targeting, antigen loading and activation of DCs in vivo, which results in vivo treatment of diseases by generating a beneficial immune response in the patient. The invention thus fulfills a longstanding need for effective and efficient regimes for immunization/vaccination.

SUMMARY OF THE INVENTION

In one aspect of the invention methods of delivering a polynucleotide to a dendritic cell expressing DC-SIGN are provided. In some embodiments the methods comprise transducing the dendritic cell with a recombinant virus, wherein the recombinant virus comprises the polynucleotide to be delivered and a targeting molecule that binds DC-SIGN. In some embodiments the targeting molecule is specific for DC-SIGN.

In some embodiments of the invention, the recombinant virus comprises sequences from a lentivirus genome, such as an HIV genome.

In other embodiments the recombinant virus comprises sequences from a gammaretrovirus genome, such as sequences from a Mouse Stem Cell Virus (MSCV) genome or a Murine Leukemia Virus (MLV) genome.

In some embodiments of the invention, the methods utilize a targeting molecule comprising a viral glycoprotein derived from at least one virus selected from the group of Sindbis virus, influenza virus, Lassa fever virus, tick-borne encephalitis virus, Dengue virus, Hepatitis B virus, Rabies virus, Semliki Forest virus, Ross River virus, Aura virus, Born disease virus, Hantau virus, and SARS-CoV virus. In more particular embodiments, the targeting molecule comprises a modified viral glycoprotein derived from Sindbis virus (SIN or SVG). In certain embodiments, the targeting molecule is SNinnu also known as SVGmu (SEQ ID NO: 11).

In some embodiments, the polynucleotide is to be delivered to a dendritic cell comprises at least one of the following: a gene encoding a protein of interest, a gene encoding a siRNA, and a gene encoding a microRNA. The gene encoding a protein of interest may encode an antigen, such as a tumor antigen or an HIV antigen.

The recombinant virus may be produced by transfecting a packaging cell line with a viral vector comprising the polynucleotide to be delivered and a vector comprising a gene encoding the targeting molecule; culturing the transfected packaging cell line; and recovering the recombinant virus from the packaging cell culture. In some embodiments, the packaging cell line is a 293 cell line.

In some embodiments of the invention, the polynucleotide is delivered to a dendritic cell in vitro, while in other embodiments the polynucleotide is delivered to a dendritic cell in a subject in vivo. The subject is typically a mammalian, such as a human, mouse or guinea pig.

In another aspect, recombinant virus comprising: a polynucleotide of interest; and a targeting molecule that binds
DC-SIGN are provided. In some embodiments, the targeting molecule specifically binds DC-SIGN. The recombinant virus may comprise sequences from a lentivirus genome, such as sequences from an HIV genome. In other embodiments, the recombinant virus comprises sequences from a gammaretrovirus genome, such as sequences from a Mouse Stem Cell Virus (MSCV) genome or a Murine Leukemia Virus (MLV) genome.

The targeting molecule may comprise a viral glycoprotein derived from at least one virus selected from the group of: Sindbis virus, influenza virus, Lassa fever virus, tick-borne encephalitis virus, Dengue virus, Hepatitis B virus, Rabies virus, Semliki Forest virus, Ross River virus, Aura virus, Borre disease virus, Hantaan virus, and SARS-CoV virus. In some embodiments, the targeting molecule is a viral glycoprotein derived from Sindbis virus. In particular embodiments, the targeting molecule is SVGmu (SEQ ID NO: 11).

The polynucleotide may be, for example, at least one of the following: a gene encoding a protein of interest, a gene encoding a siRNA, and a gene encoding a microRNA of interest. In some embodiments, the polynucleotide encodes an antigen, such as a tumor antigen or an HIV antigen.

In another aspect, methods of stimulating an immune response in a mammal are provided. A polynucleotide encoding an antigen to which an immune response is desired is delivered to dendritic cells expressing DC-SIGN by contacting the dendritic cells with a recombinant virus comprising the polynucleotide and a targeting molecule that binds DC-SIGN. In some embodiments, the targeting molecule is specific for DC-SIGN and does not bind appreciably to other molecules. In other embodiments, the targeting molecule binds preferentially to DC-SIGN.

In a further aspect, vectors encoding targeting molecules that bind DC-SIGN are provided. In some embodiments, the targeting molecule is a modified viral glycoprotein. In further embodiments, the targeting molecule is SVGmu (SEQ ID NO: 11). The targeting molecule specifically binds DC-SIGN in some embodiments. The vector may additionally encode one or more genes of interest, such as a gene encoding an antigen and/or a gene encoding a dendritic cell maturation factor.

In a still further aspect, methods of treating a patient with a disease are provided. A recombinant virus is administered to the patient, where the recombinant virus comprises a polynucleotide encoding an antigen associated with the disease and a targeting molecule that binds DC-SIGN. The targeting molecule may be derived from a viral glycoprotein. In some embodiments, the targeting molecule is SVGmu (SEQ ID NO: 11).

The disease to be treated is generally one for which an antigen is known or can be identified. In some embodiments of the invention, the disease to be treated is cancer. In other embodiments, the disease is HIV/AIDS.

Dendritic cells transduced with a recombinant virus are also provided, where the recombinant virus comprises a polynucleotide of interest and a targeting molecule that binds DC-SIGN. In some embodiments, the targeting molecule comprising a viral glycoprotein derived from at least one virus selected from the group of: Sindbis virus, influenza virus, Lassa fever virus, tick-borne encephalitis virus, Dengue virus, Hepatitis B virus, Rabies virus, Semliki Forest virus, Ross River virus, Aura virus, Borre disease virus, Hantaan virus, and SARS-CoV virus. In some embodiments, the targeting molecule is SVGmu (SEQ ID NO: 11).

Further, methods of immunizing a mammal by delivering a polynucleotide encoding an antigen to dendritic cells expressing DC-SIGN are also provided in which the dendritic cells are contacted with a recombinant virus comprising a polynucleotide encoding an antigen and a targeting molecule that binds DC-SIGN. In some embodiments, the dendritic cells are contacted with the recombinant virus ex vivo. In other embodiments, the dendritic cells are contacted with the recombinant virus in vivo.

The methods disclosed herein can also be used to stimulate an immune response to a specific antigen in a mammal by delivery of a polynucleotide encoding the antigen to dendritic cells using a recombinant virus comprising the polynucleotide and a targeting molecule that binds DC-SIGN. The immune response may be modulated by providing a further polynucleotide whose expression in the dendritic cell modulates the immune response. For example, a polynucleotide encoding a dendritic maturation factor may be delivered.

FIG. 1 is a schematic representation of a general strategy to target dendritic cells (DCs) for antigen delivery. Sindbis virus wild-type glycoprotein is mutated at the heparin sulfate binding site to abolish its binding ability. The resulting mutant glycoprotein (SVGmu) binds DC-SIGN but does not bind heparin sulfate. DC-SIGN: Dendritic Cell Specific ICAM-3 (Intracellular Adhesion Molecules 3)-Grabbing Nonintegrin.

FIG. 2 illustrates laser confocal microscope images of virus particles harvested from virus-producing cells transiently transfected with lentiviral vector, plasmids encoding GFP-vpr and SVGmu, and other necessary packaging constructs. The virus particles are labeled with GFP (green). The surface incorporation of SVGmu was detected by immunostaining with an anti-HA tag antibody (red) to label SVGmu. In the “GFP” slide, viral particles labeled with GFP are green. In the “SVGmu” slide, viral particles with surface incorporation of SVGmu are stained red. In the “Merged” slide, viral particles where only GFP is expressed are green, viral particles where only SVGmu is incorporated into the surface are red, and viral particles expressing both GFP and containing SVGmu are yellow. The overlay of the green and red colors (yellow) indicates the viral particles containing SVGmu, which represent the majority of the total virus particles. The scale bar represents 2 μm.

FIG. 3A shows flow cytometric analysis of constructed target cell lines 293T.hDCSIGN expressing human DC-SIGN, and 293T.mDCSIGN expressing murine DC-SIGN. Solid line: expression of DC-SIGN in target cell lines; shaded area: background staining in 293T cells.

FIG. 3B shows flow cytometry results for detection of GFP expressed in 293T cells transduced with lentivector enveloped with wild-type Sindbis glycoprotein (FUGW/SVG) or mutant Sindbis glycoprotein (FUGW/SVGmu). One milliliter of fresh viral supernatants of FUGW/SVG and FUGW/ SVGmu were used to transduce 293T cells (2x10^5) expressing human DC-SIGN (293T.hDCSIGN) or murine DC-SIGN (293T.mDCSIGN). The parental 293T cells lacking the expression of DC-SIGN were included as controls. As illustrated, lentivector enveloped with the mutant Sindbis virus glycoprotein (SVGmu) is able to specifically transduce 293T cells expressing human or mouse DC-SIGN. The specific transduction titer of FUGW/SVGmu was estimated to be approximately 1x10^5 TU/ml for 293T.hDCSIGN and approximately 0.8x10^4 TU/ml for 293T.mDCSIGN.

FIG. 4A shows flow cytometry results that illustrate the ability of the FUGW lentivirus enveloped with the mutant Sindbis glycoprotein (FUGW/SVGmu) to specifically transduce mouse dendritic cells expressing DC-SIGN in a primary mixed bone marrow culture. Whole bone marrow cells iso-
lated from B6 mice were exposed to the fresh viral supernatant of FUGW/SVGMu. The FUGW lentivirus pseudotyped with the ectropic glycoprotein (FUGW/Eco) was included as a non-targeting control. Surface antigens of the GFP-positive cells were assessed by staining with anti-CD11c and anti-DC-SIGN antibodies.

Fig. 4B shows flow cytometry results indicating that FUGW lentivirus enveloped with the mutant Sindbis glycoprotein (FUGW/SVGMu) does not transduce other cell types including primary T cells (CD3+, top panel) and B cells (CD19+, bottom panel). Primary CD3+ T cells and CD19+ B cells were isolated from the mouse spleen and transduced with the fresh viral supernatant of either the targeting FUGW/SVGMu or non-targeting FUGW/Eco vector. GFP expression was analyzed by flow cytometry. Solid line: cells exposed to indicated lentiviral vector; shaded area: cells without transduction.

Fig. 5 shows flow cytometry results that illustrate the ability of the FUGW lentivirus enveloped with the mutant Sindbis glycoprotein (FUGW/SVGMu) to specifically transduce bone marrow-derived DCs (BMDCs). BMDCs were generated by culturing freshly isolated bone marrow cells in the presence of cytokine GM-CSF for 6 days. The cells were then transduced with the fresh viral supernatant of either the targeting FUGW/SVGMu or non-targeting FUGW/Eco vector. GFP and CD11c expression were measured by flow cytometry.

Fig. 6 shows activation of BMDCs after targeted transduction with FUGW/SVGMu. DC activation was assessed by analyzing the surface expression of CD86 and I-A using flow cytometry. The addition of LPS (1 μg/ml) overnight was used as a synergistic stimulus for the activation of transduced BMDCs. Shaded area: GFP negative (untransduced); solid line: GFP positive (transduced).

Figs. 7A, 7B and 7C illustrate targeting of DCs in vivo using FUGW/SVGMu lentivirus. B6 mice were injected with 50x10⁶ TU of FUGW/SVGMu and analyzed 3 days later. Non-immunized mice were included as a control. In Fig. 7A, the images show the size of a representative inguinal lymph node close to the injection site compared to that of the equivalent lymph node distant from the injection site. Fig. 7B illustrates the total cell number counts of the indicated lymph nodes in Fig. 7A. Fig. 7C illustrates representative flow cytometric analysis of CD11c+ cells from the two lymph nodes shown in Fig. 7A. The numbers indicate the fraction of GFP+ DC populations.

Fig. 8 provides a schematic representation of the lentivector encoding the OVA antigen (FOVA) (top) and the lentivector encoding GFP (FUGW) as a control (bottom).

Fig. 9 illustrates in vitro stimulation of CD8+ OT1 T cells by dendritic cells that were transduced with the FOVA/SVGMu (DC/FOVA) or FUGW/SVGMu lentivector (DC/ FUGW), or by non-transduced BMDCs pulsed with OVA peptide (SIINFEKL—SEQ IND NO: 12) (DC/OVAp). Patterns of surface activation markers of OT1 T cells cocultured with BMDCs were assessed by antibody staining for CD69, CD62L, and CD44. Shaded area: naive OT1 T cells harvested from transgenic animals; solid line: OT1 T cells cocultured with indicated BMDCs.

Fig. 10A illustrates the measurement of IFN-γ by ELISA in OT1 T cells mixed with various dilutions of BMDCs transduced with FOVA/SVGMu (), FUGW/SVGMu (), or pulsed with OVA peptide () and cultured for 5 days.

Fig. 10B illustrates the proliferative responses of treated OT1 T cells from Fig. 10A measured by a [3H] thymidine incorporation assay for 12 hours.

Fig. 11 illustrates in vitro stimulation of CD4+OT2 T cells by dendritic cells that were transduced with the FOVA/ SVGMu (DC/FOVA) or FUGW/SVGMu lentivector (DC/ FUGW), or by non-transduced BMDCs pulsed with OVA peptide (ISQAVHAAHAEINEAGR—SEQ IND NO: 13) (DC/ OVAp). Patterns of surface activation markers of OT2 transgenic T cells cocultured with BMDCs were assessed by antibody staining for CD25, CD69, CD62L, and CD44. Shaded area: naive OT2 T cells harvested from transgenic animals; solid line: OT2 T cells cocultured with BMDCs.

Fig. 12 illustrates the measurement of IFN-γ by ELISA in OT2 T cells mixed with various dilutions of BMDCs transduced with FOVA/SVGMu (), FUGW/SVGMu (), or pulsed with OVA peptide () and cultured for 3 days.

Fig. 13A provides a schematic representation of the retroviral vector MIG-OT1 used for genetic modification of murine hematopoietic stem cells.

Fig. 13B illustrates how CD8+ OT1 T cells derived from the MIG-OT1-modified HSCs in reconstituted mice were identified by the co-expression of GFP and TCR Vε2 or Vβ3. HSCs from B6 mice were infected with MIG-OT1 pseudotyped with Epo (MIG-OT1/Eco) and transferred into irradiated B6 recipient mice. Eight weeks post-transfer, the CD8+ OT1 T cells were identified by flow cytometry.

Fig. 14A illustrates assessment of patterns of surface activation markers on GFP+OT1 T cells isolated from the spleens of reconstituted and immunized mice. Mice reconstituted by MIG-OT1 modified HSCs were immunized by direct subcutaneous injection of 10x10⁶ TU of either FOVA/SVGMu or FUGW/SVGMu (as a control) and analyzed seven days later. Detection of surface staining for CD69, CD62L, and CD44 was conducted. Solid line: GFP+OT1 T cells from FOVA/SVGMu-immunized mice; dotted line: GFP+OT1 T cells from control FUGW/SVGMu-immunized mice; shaded area: GFP+OT1 T cells from non-immunized mice.

Fig. 14B illustrates the total number of OT1 cells harvested from lymph nodes (LN,) or spleens (SP,) of non-immunized mice (no imm) or mice immunized with FUGW/SVGMu or FOVA/SVGMu.

Fig. 15 illustrates in vivo stimulation of antigen specific T cell and antibody responses in wild-type mice following a subcutaneous injection of the DC-targeting lentivector FOVASVGMu. B6 mice were immunized subcutaneously with 50x10⁶ TU of either FOVA/SVGMu or FUGW/SVGMu (as a control). Mice without immunization (no imm.) were included as a negative control. Fourteen days post-immunization, spleen cells were harvested and analyzed for the presence of OVA-specific T cells measured by H-2 Kb-SIINFEKL-PE tetramer and CD44 staining. Indicated percentages are the percent of total CD8+ T-cells ().

Figs. 16A and 16B illustrate in vivo OVA-specific T cell responses seen in mice receiving different subcutaneous doses of FOVA/SVGMu. OVA-specific T cells were identified by tetramer staining as in Fig. 17. Fig. 16A shows the measured percentage of OVA-specific T cells following immunization with 100x10⁶ TU of FOVA/SVGMu. Fig. 16B shows the dose responses of OVA-specific T cells following injection of the indicated doses of FOVA/SVGMu.

Fig. 17A illustrates the patterns of surface activation markers of OVA-specific CD8+ T cells (identified as tetramer positive cells) isolated from FOVA/SVGMu immunized mice 2 weeks post-injection. The surface activation markers were assessed by antibody staining for CD25, CD69, CD62L and CD44. Solid line: tetramerCD8+ T cells from FOVA/SVGMu-immunized mice; shaded area: naive CD8+ T cells from non-immunized mice.
FIG. 17B illustrates the OVA-specific serum IgG titer of B6 mice following immunization with 50x10^6 TU FOVA/SVGMu. Sera were collected on day 7 and day 14 post-immunization and were analyzed for the titer of OVA-specific IgG using ELISA at serial 10x dilutions, starting at 1:100. The titer values were determined by the highest dilution at which the optical density was 2x standard derivations higher than that of the baseline serum at the equivalent dilution.

FIG. 18 illustrates tumor size as a function of time in a murine E.G7 tumor model. B6 mice were immunized with subcutaneous injection of 50x10^6 TU of either FOVA/SVGMu (▲) or mock vector FUW/SVGMu (●). No immunization (□) was included as a control. Four mice were included in each group. At day 14 post-immunization, the mice were challenged with 5x10^5 of either E.G7 tumor cells (expressing the OVA antigen, left panel) or the parental EL4 tumor cells (lacking the OVA antigen, as a control, right panel) subcutaneously. Tumor growth was measured with a fine caliper and is shown as the product of the two largest perpendicular diameters (mm^2).

FIG. 19 illustrates the in vivo kinetic growth of tumors in a murine E.G7 tumor eradication model. An albino strain of B6 mice were implanted with 5x10^5 E.G7 tumor cells stably expressing a firefly luciferase imaging gene (E.G7.luc). A mouse (●) without tumor implantation was included as a control. Mice bearing tumors were treated with immunization (▲), or with immunization by the injection of 50x10^6 TU of FOVA/SVGMu at days 3 and 10 (△ , ▪) post tumor challenge. The kinetic growth of the tumors was monitored by live animal imaging using BLI. The p/s/cm^2/sr represents photons/s/cm^2/steridian.

FIG. 20 shows the quantitation of luminescence signals generated by the E.G7 tumors in FIG. 19. (□) for mouse #2; (●) for mouse #3; (▲) for mouse #4.

FIG. 21 illustrates the percentage of OVA-specific T cells present following immunization with 10x10^6 TU of FOVA/SVGMu in the albino strain of B6 mice. Albino B6 mice were immunized subcutaneously with 50x10^6 TU of either the DC-targeting Fluc/SVGMu lentivirus (shown in FIG. 25A) or a non-targeting Fluc/HSV/VEGf lentivirus. The representative image was obtained at day 30 post-injection using IVIS200® (Xenogen).

FIG. 22 illustrates reprogramming of a single dose of recombinant DC-specific lentivirus FOVA/SVGMu can generate IFN-γ+CD8+ T cells in B6 mice. Naïve B6 mice are immunized by subcutaneous injection of 50x10^6 TU of FOVA/SVGMu lentivirus, or the same dose of FUGW/SVGMu as a control. The non-immunized B6 mice (no imm.) were included as a negative control. Two weeks later, spleen cells were harvested from the experimental mice, and were analyzed for intracellular IFN-γ production using flow cytometry with or without OVA peptide restimulation. Indicated percentages are the percent of IFN-γ+CD8+ T cells of the total CD8+ T cells.

FIG. 24 illustrates a schematic representation of lentiviral constructs for preparation of DC-targeting recombinant viruses.

FIG. 25 shows a schematic representation of an embodiment of in situ vaccination against HIV/AIDS.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Genetic engineering has been shown to be an efficient and potent means to convert dendritic cells (DCs) into special immune cells to induce antigen-specific immune responses. A great deal of research involving in vitro manipulation of DCs for vaccination/immunization against cancer, HIV and other diseases has been conducted. However, until now, it has not been possible to specifically and efficiently deliver a gene of interest, such as a gene encoding an antigen, to dendritic cells in vitro and in vivo. The inventors have discovered novel methods and compositions for efficient and specific targeting of DCs in vitro and in vivo. The methods and compositions can be used to induce antigen-specific immune responses, for example for immunotherapy.

Embodiments of the invention include methods and compositions for targeting dendritic cells (DCs) by using a recombinant virus to deliver a polynucleotide to the DCs. This is preferably accomplished through targeting the DC-specific surface molecule DC-SIGN (Dendritic Cell Specific ICAM-3 (Intracellular Adhesion Molecules 3)-Grubbing Nonintegrin; also known as CD209). DC-SIGN is a C-type lectin-like receptor capable of rapid binding and endocytosis of materials (Geijtenbeek, T. B., et al., 2004. Annu. Rev. Immunol. 22: 33-54, which is incorporated herein by reference in its entirety). In preferred embodiments, recombinant viruses are enveloped with a designed targeting molecule that is specific in its recognition for DC-SIGN. The polynucleotide can include, but is not limited to, a gene of interest, siRNA(s), and/or microRNA(s). In preferred embodiments, the polynucleotide encodes an antigen. In some embodiments, the recombinant virus delivers more than one gene to DCs. For example, genes encoding two or more antigens could be delivered. The delivery of more than one gene can be achieved, for example, by linking the genes with an Internal Ribosome Entry Site (IRES), and/or with 2A sequences, and driving the expression using a single promoter/enhancer.

As discussed in more detail below, embodiments of the invention are based on the use of recombinant viruses, such as lentiviruses and gammaretroviruses, because these viruses are able to incorporate into their envelope a large number of proteins are found on the surface of virus-producing cells. However, as also discussed below, other types of viruses may be used and the methods modified accordingly. Generally, a packaging cell line is transfected with a viral vector encoding a polynucleotide of interest (typically encoding an antigen), at least one plasmid encoding virus packaging components (such as gag and pol) and a targeting molecule that is engineered to bind dendritic cells. In preferred embodiments, the targeting molecule is genetically engineered to specifically bind the DC-SIGN cell surface marker of dendritic cells. During budding of the virus, the targeting molecule, which is expressed in the packaging cell membrane, is incorporated into the viral envelope. As a result, the retroviral particles comprise a core including the polynucleotide of interest and an envelope comprising the targeting molecule on its surface. The targeting molecule is able to bind DC-SIGN on a dendritic cell, and the virus is able to deliver the gene of interest to the dendritic cell. Without wishing to be bound by theory, it is believed that the binding induces endocytosis,
brining the virus into an endosome, triggering membrane fusion, and allowing the virus core to enter the cytosol. Following reverse transcription and migration of the product to the nucleus, the genome of the virus integrates into the target cell genome, incorporating the polynucleotide of interest into the genome of the target cell. The DC then expresses the polynucleotide of interest (typically encoding an antigen). The antigen is then processed and presented to T and B cells by DCs, generating an antigen-specific immune response. The specific pathway described above is not required so long as the dendritic cell is able to stimulate an antigen-specific immune response.

Embodiments of the present invention include methods and compositions for direct targeting of a gene of interest to DCs both in vitro and in vivo. In some preferred embodiments, the gene of interest is delivered to DCs without in vitro culture of DCs. For example, the gene of interest may be delivered to DCs as a direct administration of the targeting virus into a living subject. The gene of interest preferably encodes an antigen against which an immune response is desired. Exemplary antigens include tumor-specific antigens, tumor-associated antigens, tissue-specific antigens, bacterial antigens, viral antigens, yeast antigens, fungal antigens, protozoan antigens, parasitic antigens, mitogens, and the like. Other antigens will be apparent to one of skill in the art and can be utilized without undue experimentation.

The methods disclosed herein may be readily adopted to utilize targeting molecules that are specific for DCs or that can be manipulated to provide the desired specificity. The targeting molecule is preferably an engineered viral glycoprotein that binds DC-SIGN in dendritic cells and that facilitates delivery of the gene of interest into the dendritic cells. Exemplary targeting molecules include, but are not limited to, glycoproteins derived from the following: Sindbis virus, influenza virus, Lassa fever virus, tick-borne encephalitis virus, Dengue virus, Hepatitis B virus, Rabies virus, Semliki Forest virus, Ross River virus, Aura virus, Borna disease virus, Hantaan virus, and SARS-CoV virus. The targeting molecule is preferably membrane bound. If necessary, a DC-SIGN-specific targeting molecule that is designed or derived from a viral glycoprotein for use in the recombinant virus can be modified to a membrane bound form.

Any method known in the art can be used to engineer the targeting molecule to provide the desired specificity. Exemplary methods include, but are not limited to, rational protein engineering and DNA shuffling. Generally, to engineer a targeting molecule specific for DCs, a viral glycoprotein that interacts with a dendritic cell-specific surface marker is provided. Preferably, the viral glycoprotein interacts with DC-SIGN. The viral glycoprotein can also interact with at least a second cell surface marker such as, for example, heparin sulfate (HS), which is expressed on cell types other than DCs. The viral glycoprotein is modified such that its ability to interact with the DC-specific surface marker is maintained while its ability to interact with additional cell surface markers is decreased or eliminated. The modification can be a mutation in at least one residue of the viral glycoprotein amino acid sequence. The mutation can be a deletion, addition or substitution of the residue, and it can be carried out by standard methods known in the art. The desired specificity can readily be confirmed. For example, once the viral glycoprotein is modified, it can be used to prepare a recombinant virus by co-transfection with a viral vector containing a reporter gene and at least one plasmid encoding virus packaging components into a packaging cell line. The glycoprotein is incorporated into the viral envelope during budding of the virus. The virus can be used to transfect both a pure population of DCs as well as a mixed population of cells containing DCs, and specificity of the viral transduction of DCs can be confirmed by assaying the cells for expression of the reporter gene in DCs and not to a significant extent in other cell types. If the specificity is not sufficiently stringent (for example, if undesired levels of infection of other cell types is observed), the viral glycoprotein can be modified further and assayed as described until the desired specificity is achieved.

Embodiments of the present invention include the delivery to DCs of DC activators and/or maturation factors in conjunction with antigens. Exemplary DC activators and maturation factors include, but are not limited to, stimulation molecules, cytokines, chemokines, antibodies and other agents such as Flt-3 ligands. For example, the DC maturation factors can include at least one of the following: GM-CSF, IL-2, IL-4, IL-6, IL-7, IL-15, IL-21, IL-23, TNFα, B7.1, B7.2, 4-1BB, CD40 ligand (CD40L) and drug-inducible CD40 (iCD40) (Hanks, B. A., et al. 2005. Nat Med 11:130-137, which is incorporated herein by reference in its entirety).

Embodiments of the present invention also include methods and compositions related to administration of recombinant virus as described above, or DCs infected with recombinant virus, into patients to stimulate antigen-specific immune responses, such as, for example, T cell responses (cellular immune responses) and B cell responses (humoral immune responses). For example, activated CD4 T cells can coordinate and orchestrate the CD8+ cytotoxic T cells and the B cells in an antigen-specific response. In preferred embodiments, the recombinant virus and/or DCs infected with recombinant virus are used to stimulate immune responses for the prevention and treatment of diseases such as, but not limited to, cancer and AIDS/HIV. Any disease can be treated for which an immune response to a particular antigen is beneficial, including, but not limited to, neoplastic disease, infectious disease, and immune-related diseases.

As herein described, studies were conducted that resulted in the discovery of methods and compositions that can be used to direct recombinant viruses to provide genes encoding particular antigens into DCs. The genetic modification of DCs in order to elicit productive immune responses can be used in the prevention and treatment of diseases and provides an effective method of inducing effective T cell immunity as well as strong antibody production. The methods and compositions described herein can provide potent means for immunization with desired antigens. Such immunization can prevent and treat diseases such as, for example, cancer and AIDS/HIV.

Definitions

Unless defined otherwise, technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. See, e.g., Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, N.Y. 1994); Sambrook et al., Molecular Cloning, A Laboratory Manual, Cold Springs Harbor Press (Cold Springs Harbor, N.Y. 1989). Any methods, devices and materials similar or equivalent to those described herein can be used in the practice of this invention.

As used herein, the terms nucleic acid, polynucleotide and nucleotide are interchangeable and refer to any nucleic acid, whether composed of phosphodiester linkages or modified linkages such as phosphotriester, phosphoromidate, siloxane, carbonate, carboxymethylester, acetalidate, carbonate, thioether, bridged phosphoromidate, bridged methylene phosphate, bridged phosphomidate, bridged phosphoromidate, bridged methylene phosphate, phosphorothioate,
The terms "antibody" is used in the broadest sense and specifically covers human, non-human (e.g., murine), chimeric, and humanized monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), single-chain antibodies, and antibody fragments so long as they exhibit the desired biological activity. Typically, fragments compete with the intact antibody from which they were derived for specific binding to an antigen.

The term "epitope" or "antigenic determinant" refers to a site on an antigen to which B and/or T cells respond. B-cell epitopes can be formed both from contiguous amino acids or noncontiguous amino acids juxtaposed by tertiary folding of a protein. Epitopes formed from contiguous amino acids are typically retained on exposure to denaturing solvents whereas epitopes formed by tertiary folding are typically lost on treatment with denaturing solvents. An epitope typically includes at least 3, and more usually, at least 5 or 8-10 amino acids in a unique spatial conformation. Methods of determining spatial conformation of epitopes include, for example, x-ray crystallography and 2-dimensional nuclear magnetic resonance. See, e.g., *Epitope Mapping Protocols in Methods in Molecular Biology*, Vol. 66, Glenn E. Morris, Ed. (1996).

Antibodies that recognize the same epitope can be identified in a simple immunosassay showing the ability of one antibody to block the binding of another antibody to a target antigen. T-cells recognize continuous epitopes of about nine amino acids for CD8 cells or about 13-15 amino acids for CD4 cells. T cells that recognize the epitope can be identified in vitro assays that measure antigen-dependent proliferation, as determined by 3H-thymidine incorporation by primed T cells in response to an epitope (see Burke, supra; Tigges, supra).

"Target cells" are any cells to which delivery of a polypeptide or in which expression of a gene of interest is desired. Preferably, target cells are dendritic cells, particularly dendritic cells that express DC-SIGN.

The term "mammal" is defined as an individual belonging to the class Mammalia and includes, without limitation, humans, domestic and farm animals, and zoo, sports, and pet animals, such as sheep, dogs, horses, cats and cows.

The term "subject" or "patient" includes human and other mammalian subjects that receive either prophylactic or therapeutic treatment.

As used herein, "treatment" is a clinical intervention that may be therapeutic or prophylactic. In therapeutic applications, pharmaceutical compositions or medicaments are administered to a patient suspected of or already suffering from such a disease in an amount sufficient to cure, or at least partially arrest, the symptoms of the disease and its complications. In prophylactic applications, pharmaceutical compositions or medicaments are administered to a patient susceptible to, or otherwise at risk of, a particular disease in an amount sufficient to eliminate or reduce the risk or delay the onset of the disease. An amount adequate to accomplish this is defined as a therapeutically- or pharmacologically-effective dose. Such an amount can be administered as a single dosage or be administered according to a regimen, whereby it is effective. The amount can cure a disease but, typically, is administered in order to ameliorate the symptoms of a disease, or to effect prophylaxis of a disease or disorder from developing. In both therapeutic and prophylactic regimes, agents are usually administered in several dosages until a sufficient immune response has been achieved. Typically, the immune response is monitored and repeated dosages are given if the immune response starts to fade. "Treatment" need not completely eliminate a disease, nor need it completely prevent a subject from becoming ill with the disease or disorder.
“Tumor,” as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all precancerous and cancerous cells and tissues.

The term “cancer” refers to a disease or disorder that is characterized by unregulated cell growth. Examples of cancer include, but are not limited to, carcinoma, lymphoma, blastoma and sarcoma. Examples of specific cancers include, but are not limited to, lung cancer, colon cancer, breast cancer, testicular cancer, stomach cancer, pancreatic cancer, ovarian cancer, liver cancer, bladder cancer, colorectal cancer, and prostate cancer. Additional cancers are well known to those of skill in the art and include, but are not limited to: leukemia, lymphoma, cervical cancer, glioma tumors, adenoacrinomas and skin cancer. Exemplary cancers include, but are not limited to, a bladder tumor, breast tumor, prostate tumor, basal cell carcinoma, bilateral colorectal cancer, bladder cancer, bone cancer, brain and CNS cancer (e.g., glioma tumor), cervical cancer, choriocarcinoma, colon and rectum cancer, connective tissue cancer, cancer of the digestive system; endometrial cancer; esophageal cancer; eye cancer; cancer of the head and neck; gastric cancer; intra-epithelial neoplasia; kidney cancer; lymphoma; leukemia; liver cancer; lung cancer (e.g., small cell and non-small cell); lymphoma including Hodgkin’s and Non-Hodgkin’s lymphoma; melanoma; myeloma, neuroblastoma, oral cavity cancer (e.g., lip, tongue, mouth, and pharynx); ovarian cancer; pancreatic cancer, retinoblastoma; rhabdomyosarcoma; rectal cancer; renal cancer; cancer of the respiratory system; sarcoma, skin cancer; stomach cancer, testicular cancer, thyroid cancer; uterine cancer, cancer of the urinary system, as well as other carcinomas and sarcomas. Cancer also includes neoplasias and malignant disorders in mammals that are well known in the art.

A “vector” is a nucleic acid that is capable of transporting another nucleic acid. Vectors may be, for example, plasmids, cosmids or phage. An “expression vector” is a vector that is capable of directing expression of a protein or proteins encoded by one or more genes carried by the vector when it is present in the appropriate environment.

The term “regulatory element” and “expression control element” are used interchangeably and refer to nucleic acid molecules that can influence the transcription and/or translation of an operably linked coding sequence in a particular environment. These terms are used broadly and cover all elements that promote or regulate transcription, including promoters, core elements required for basic interaction of RNA polymerase and transcription factors, upstream elements, enhancers, and response elements (see, e.g., Lewin, “Genes V” (Oxford University Press, Oxford) pages 847-873). Exemplary regulatory elements in prokaryotes include promoters, operator sequences and a ribosome binding sites. Regulatory elements that are used in eukaryotic cells may include, without limitation, promoters, enhancers, splicing signals and polyadenylation signals.

The term “transfection” refers to the introduction of a nucleic acid into a host cell.

“Retroviruses” are viruses having an RNA genome.

“Lentivirus” refers to a genus of retroviruses that are capable of infecting dividing and non-dividing cells. Several examples of lentiviruses include HIV (human immunodeficiency virus; including HIV type 1, and HIV type 2), the etiologic agent of the human acquired immunodeficiency syndrome (AIDS); visna-maedi, which causes encephalitis (visna) or pneumonia (maedi) in sheep, the caprine arthritis-encephalitis virus, which causes immune deficiency, arthritis, and encephalopathly in goats, equine infectious anemia virus, which causes autoimmune hemolytic anemia, and encephalopathy in horses; feline immunodeficiency virus (FIV), which causes immune deficiency in cats; bovine immune deficiency virus (BIV), which causes lymphadenopathy, lymphocytosis, and possibly central nervous system infection in cattle; and simian immunodeficiency virus (SIV), which cause immune deficiency and encephalopathy in sub-human primates.

A lentiviral genome is generally organized into a 5’ long terminal repeat (LTR), the gag gene, the pol gene, the env gene, the accessory genes (nef, vif, vpr, vpu) and a 3’ LTR.

“Gammaparetovirus” refers to a genus of the retroviridae family. Exemplary gammaparetoviruses include, but are not limited to, mouse stem cell virus, murine leukemia virus, feline leukemia virus, feline sarcoma virus, and avian reticuloendotheliosis viruses.

A “hybrid virus” as used herein refers to a virus having components from one or more other viral vectors, including element from non-retroviral vectors, for example, adenviral-retroviral hybrids. As used herein hybrid vectors having a retroviral component are to be considered within the scope of the retroviruses.

“Virion,” “viral particle” and “retroviral particle” are used herein to refer to a single virus comprising an RNA genome, pol gene derived proteins, gag gene derived proteins and a lipid bilayer displaying an envelope (glyco)protein. The RNA genome is usually a recombinant RNA genome and thus may contain an RNA sequence that is exogenous to the native viral genome. The RNA genome may also comprise a defective endogenous viral sequence.

A “pseudotyped” retrovirus is a retroviral particle having an envelope protein that is from a virus other than the virus from which the RNA genome is derived. The envelope protein can be, for example and without limitation, from a different retrovirus or from a non-retroviral origin. The envelope protein can be a native envelope protein or an envelope protein that is modified, mutated or engineered as described herein. In some embodiments, an envelope protein is a DC-SIGN-specific viral glycoprotein that is derived from a glycoprotein from one of the following: Sindbis virus, influenza virus, Lassa fever virus, tick-borne encephalitis virus, Dengue virus, Hepatitis B virus, Rabies virus, Semliki Forest virus, Ross River virus, Aura virus, Born disease virus, Hantaan virus, and SARS-CoV virus.

“Transformation,” as defined herein, describes a process by which exogenous DNA enters a target cell. Transformation may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell and may include, but is not limited to, viral infection, electroporation, heat shock, lipofection, and particle bombardment. “Transformed” cells include stably transformed cells in which the inserted nucleic acid is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome. Also included are cells that transiently express a gene of interest.
A "fusogenic molecule," as described herein, is any molecule that can trigger membrane fusion when present on the surface of a virus and allows a virus core to pass through the membrane and, typically, enter the cytosol of a target cell. Fusogenic molecules can be, for example, viral glycoproteins. Exemplary viral glycoproteins contemplated as fusogenic molecules include, but are not limited to hemagglutinin, mutant hemagglutinin, SN and viral glycoproteins from the following viruses: Sindbis virus, influenza virus, Lassa fever virus, tick-borne encephalitis virus, Dengue virus, Hepatitis B virus, Rabies virus, Semliki Forest virus, Ross River virus, Aura virus, Borna disease virus, Hantaan virus, and SARS-CoV virus. Glycoproteins can be native or modified to have desired activity.

By "transgene" is meant any nucleotide sequence, particularly a DNA sequence, that is integrated into one or more chromosomes of a host cell by human intervention, such as by the methods of the present invention. The transgene preferably comprises a "gene of interest.

A "gene of interest" is not limited in any way and may be any nucleic acid, without limitation, that is desired to be delivered to, integrated, transcribed, translated, and/or expressed in a target cell. The gene of interest may encode a functional product, such as a protein or an RNA molecule. Preferably the gene of interest encodes a protein or other molecule, the expression of which is desired in the target cell. The gene of interest is generally operatively linked to other sequences that are useful for obtaining the desired expression of the gene of interest, such as transcriptional regulatory sequences. In some embodiments a gene of interest is preferably one that encodes an antigen to which an immune response is desired. Other genes of interest that may be used in some embodiments are genes that encode dendritic cell activators and/or maturation factors.

A "functional relationship" and "operably linked" mean, with respect to the gene of interest, that the gene is in the correct location and orientation with respect to the promoter and/or enhancer that expression of the gene will be affected when the promoter and/or enhancer is contacted with the appropriate molecules.

"2A sequences" or elements are small peptides introduced as a linker between two proteins, allowing autonomous intraribosomal self-processing of polyproteins (de Felipe. Genetic Vaccines and Ther. 2:13 (2004); deFelipe et al. Traffic 5:616-626 (2004)). The short peptides allow co-expression of multiple proteins from a single vector, such as co-expression of a fusogenic molecule and affinity molecule from the same vector. Thus, in some embodiments polynucleotides encoding the 2A elements are incorporated into a vector between polynucleotides encoding proteins to be expressed.

"DC maturation factors" (also known as "DC activators") are compounds that can induce activation or stimulation of DCs such that DCs facilitate the elicitation of cellular and humoral immune responses. Typical DC maturation factors are known in the art and include, but are not limited to, stimulation molecules, cytokines, chemokines, antibodies and other agents such as Flt-3 ligands (Fidler, C. G., et al. 2004. Nat Med 10:475-480; Pulendran, B., et al. 2000. J Immunol 165: 566-572; Maraskovsky, E., et al. 2000. Blood 96:878-884, each of which is incorporated herein by reference in its entirety). Exemplary DC maturation factors can include, but are not limited to, GM-CSF, IL-2, IL-4, IL-6, IL-7, IL-15, IL-21, IL-23, TNFα, B7.1, B7.2, 4-1BB, CD40 ligand (CD40L) and drug-inducible CD40 (iCD40).

Targeting Molecules

As discussed above, a targeting molecule is incorporated into a recombinant virus to target the virus to dendritic cells that express DC-SIGN. The targeting molecule preferably also mediates fusion with the cell membrane and efficient transduction and delivery of the desired polynucleotide(s) into the dendritic cell. Thus, the targeting molecule is typically a fusogenic molecule (FM) with the desired binding specificity. The targeting molecule is modified, if necessary, such that it binds to DC-SIGN on dendritic cells. In some embodiments, the targeting molecule specifically binds to DC-SIGN. That is, the targeting molecule preferentially directs the recombinant virus to dendritic cells that express DC-SIGN relative to other cell types. Thus, in some embodiments, targeting molecules are created by eliminating the ability of a FM to bind to other targets, such as hemagglutinin, while retaining the ability to bind DC-SIGN. In other embodiments, the targeting molecule can be modified to eliminate native binding specificity to non-DC-SIGN molecules and components thereof and add or improve binding specificity for DC-SIGN. While some nonspecific binding to other molecules, and thus other cell types, may occur even if the targeting molecule is specific for DC-SIGN, the targeting molecules are modified to have sufficient specificity to avoid undesired side effects, such as side effects that may reduce the desired immune response.

Targeting molecules are generally molecules that are able to pseudotype virus and thus be incorporated in the envelope of recombinant viruses, target dendritic cells and, under the right conditions, induce membrane fusion and allow entry of a gene of interest to the dendritic cells. Preferred targeting molecules are viral glycoproteins. In addition, targeting molecules are preferably resistant to ultracentrifugation to allow concentration, which can be important for in vivo gene delivery.

Targeting molecules preferably induce membrane fusion at a low pH, independently of binding. Thus, in preferred embodiments, targeting molecule-induced membrane fusion occurs once the virus comprising the targeting molecule is inside the endosome of a target cell and the viral core component, including a polynucleotide of interest, is delivered to the cytosol.

In some embodiments a tag sequence is incorporated into a targeting molecule to allow detection of targeting molecule expression and the presence of the targeting molecule in viral particles.

There are two recognized classes of viral fusogens and both can be used as targeting molecules (D. S. Dimitrov, Nature Rev. Microbio. 2, 109 (2004)). The class I fusogens trigger membrane fusion using helical coiled-coil structures whereas the class II fusogens trigger fusion with β barrels. These two structures have different mechanics and kinetics (D. S. Dimitrov, Nature Rev. Microbio. 2, 109 (2004)). In some embodiments, class I fusogens are used. In other embodiments, class II fusogens are used. In still other embodiments, both class I and class II fusogens are used.

Some non-limiting examples of surface glycoproteins that may be used as targeting molecules (or as fusogenic molecules in embodiments where the viral binding and fusion functions are separate), either in the wild type or in modified form, include glycoproteins from alphaviruses, such as Semliki Forest virus (SFV), Ross River virus (RRV) and Aura virus (AV), which comprise surface glycoproteins such as E1, E2, and E3. The E2 glycoproteins derived from the Sindbis virus (SN) and the hemagglutinin (HA) of influenza virus are non-retroviral glycoproteins that specifically bind particular molecules on cell surfaces (heparin sulfate glycosaminoglycan for E2, sialic acid for HA) and can be used to create targeting molecules in some embodiments. Their fusion is relatively independent of binding to receptor molecules, and
the activation of fusion is accomplished through acidification in the endosome (Skehel and Wiley, Annu. Rev. Biochem. 69, 531-569 (2000); Smit, J. et al. J. Virol. 73, 8476-8484 (1999)). Moreover, they can tolerate certain genetic modifications and remain efficiently assembled on the retroviral surface (Morizono et al., J. Virol. 75, 8016-8020).

In other embodiments of the invention, surface glycoproteins of Lassa fever virus, Hepatitis B virus, Rabies virus, Borna disease virus, Hantaan virus, or SARS-CoV virus can be utilized as fusion molecules.

In other embodiments of the invention, flavivirus-based surface glycoproteins may be used as the basis for targeting molecules. Like alphaviruses, flaviviruses use the class II fusion molecule to mediate infection (Mukhopadhyay et al. (2005) Rev. Microbio. 3, 13-22). prM (about 165 amino acids) and E (about 495 amino acids) are the glycoproteins of flaviviruses. Also, the ligand-binding pocket for one flavivirus, Dengue virus (DV), has been well-characterized. Of interest, DC-SIGN has been suggested to specifically interact with the carbohydrate residues on the DV E protein to enhance viral entry (Mukhopadhyay et al. (2005) Nat. Rev. Microbio. 3, 13-22). Thus, lentiviruses enveloped only by DV E, or by modified DV E protein, can be used to target DCs. The TBE and DV E proteins, as well as other fusion molecules described, may be engineered to provide the desired binding specificity or to be binding deficient and fusion competent if necessary.

In some embodiments, a form of haemagglutinin (HA) from influenza A/ oval plague virus/Rostock/34 (FPV), a class I fusogen, is used (H. Hatta et al., S. Valsesia-Wittmann, S. J. Russell, F. L. Cosset, J. Virol. 72, 5313 (1998)). In some embodiments, a form of FPV HA is used (A. H. Lin et al., Hum. Gene. Ther. 12, 323 (2001)). HA-mediated fusion is generally considered to be independent of receptor binding (D. Lavillette, S. J. Russell, F. L. Cosset, Curr. Opin. Biotech. 12, 461 (2001)).

In other embodiments, a class II FM is used, preferably the Sindbis virus glycoprotein from the alphavirus family (K. S. Wang, R. J. Kuhn, E. G. Strauss, S. Ou, J. H. Strauss, J. Virol. 66, 4992 (1992)), herein also referred to as SVG. SVG includes two transmembrane proteins (S. Mukhopadhyay, R. J. Kuhn, M. G. Rossmann, Nature Rev. Microbio. 3, 13 (2005)), a first protein responsible for fusion (E1), and a second protein for cell binding (E2). SVG is known to possess both oncoretroviruses and lentiviruses.

As discussed below, in some preferred embodiments a modified SVG that preferentially binds DC-SIGN is utilized. In other embodiments, a binding-deficient and fusion-competent SVG, SVGmu, can be used as the fusogenic molecule in combination with a separate targeting molecule, such as an antibody to DC-SIGN or another dendritic cell specific protein. For example, a SVG fusogenic molecule can be used in which the immunoglobulin G binding domain of protein A (ZZ domain) is incorporated into the E2 protein and one or more additional mutations are made to inactivate the receptor binding sites (K. Morizono et al., Nature Med. 11, 346 (2005)).

The gene encoding the targeting molecule is preferably cloned into an expression vector, such as pcDNA3 (Invitrogen). Packaging cells, such as 293T cells are then co-transfected with the viral vector encoding a gene of interest (typically encoding an antigen), at least one plasmid encoding virus packaging components, and a vector for expression of the targeting molecule. If the targeting function is separated from the fusogenic function, one or more vectors encoding an affinity molecule and any associated components is also provided. The targeting molecule is expressed on the membrane of the packaging cell and incorporated into the recombinant virus. Expression of targeting molecules on the packaging cell surface can be analyzed, for example, by FACS.

Based on information obtained, for example from structural studies and molecular modeling, mutagenesis may be employed to generate the mutant forms of glycoproteins that maintain their fusogenic ability but have the desired binding specificity and/or level of binding. Several mutants may be created for each glycoprotein and assayed using the methods described below, or other methods known in the art, to identify FMs with the most desirable characteristics. For example, targeting molecules can be tested for the ability to specifically deliver antigens to dendritic cells by determining their ability to stimulate an immune response without causing undesired side effects in a mammal. The ability to specifically target dendritic cells can also be tested directly, for example, in cell culture as described below.

To select suitable targeting molecules (either wild-type or mutant), viruses bearing the targeting molecule (and an affinity molecule where appropriate) are prepared and tested for their selectivity and/or their ability to facilitate penetration of the target cell membrane. Viruses that display a wild-type glycoprotein can be used as controls for examining titer effects in mutants. Cells expressing the binding partner of the targeting molecule (or affinity molecule, where appropriate) are transduced by the virus using a standard infection assay. After a specified time, for example 48 hours post-transduction, cells can be collected and the percentage of cells infected by the virus comprising the targeting molecule (or affinity molecule and fusogenic molecule) can be determined, for example, by FACS. The selectivity can be scored by calculating the percentage of cells infected by virus. Similarly, the effect of mutations on viral titer can be quantified by dividing the percentage of cells infected by virus comprising a mutant targeting molecule by the percentage of cells infected by virus comprising the corresponding wild type targeting molecule. A preferred mutant will give the best combination of selectivity and infectious titer. Once an targeting molecule is selected, viral concentration assays may be performed to confirm that viruses envelopes by the FM can be concentrated. Viral supernatants are collected and concentrated by ultracentrifugation. The titers of viruses can be determined by limited dilution of viral stock solution and transduction of cells expressing the binding partner of the affinity molecule.

In some embodiments, BlaM-Vpr fusion protein may be used to evaluate viral penetration, and thus the efficacy of a fusion molecule (wild-type or mutant). Virus may be prepared, for example, by transient transfection of packaging cells with one or more vectors comprising the viral elements, BlaM-Vpr, and the FM of interest (and an affinity molecule if appropriate). The resulting viruses can be used to infect cells expressing a molecule the targeting molecule (or affinity molecule) specifically binds in the absence or presence of the free inhibitor of binding (such as an antibody). Cells can then be washed with CO₂-independent medium and loaded with CCF2 dye (Aurora Bioscience). After incubation at room temperature to allow completion of the cleavage reaction, the cells can be fixed by paraformaldehyde and analyzed by FACS and microscopy. The presence of blue cells indicates the penetration of viruses into the cytoplasm; fewer blue cells would be expected when blocking antibody is added.

To investigate whether penetration is dependent upon a low pH, and select targeting molecules (or fusogenic molecules) with the desired pH dependence, NH₄Cl or other compound that alters pH can be added at the infection step (NH₄Cl will neutralize the acidic compartments of endosomes). In the
case of NH₄Cl, the disappearance of blue cells will indicate that penetration of viruses is low pH-dependent.

In addition, to confirm that the activity is pH-dependent, lysosomotropic agents, such as ammonium chloride, chloroquine, concanamycin, bafilomycin A₁, monensin, nigericin, etc., may be added into the incubation buffer. These agents can elevate the pH within the endosomal compartments (e.g., Drose and Altendorf, J. Exp. Biol. 200, 1-8, 1997). The inhibitory effect of these agents will reveal the role of pH for viral fusion and entry. The different entry kinetics between viruses displaying different fusogenic molecules may be compared and the most suitable selected for a particular application.

PCR entry assays may be utilized to monitor reverse transcription and thus measure kinetics of viral DNA synthesis as an indication of the kinetics of viral entry. For example, viral particles comprising a particular targeting molecule may be incubated with packaging cells, such as 293T cells, expressing the appropriate cognate for the targeting molecule (or a separate affinity molecule in some embodiments). Either immediately, or after incubation to allow infection to occur, unbound viruses are removed and aliquots of the cells are analyzed. DNA may then be extracted from these aliquots and semi-quantitative performed using LTR-specific primers. The appearance of LTR-specific DNA products will indicate the success of viral entry and uncoating.

Although the targeting molecule can have both viral binding and fusion functions, in another aspect of the invention, the viral binding and fusion functions are separated into two distinct components. Typically, the recombinant virus comprises both (i) an affinity molecule that mediates viral binding and precisely targets the virus to dendritic cells, and (ii) a distinct fusogenic molecule (FM) that mediates efficient transduction and delivery of the desired polynucleotide into the dendritic cells. The methods disclosed herein may be readily adopted to utilize any of a variety of affinity molecules and fusogenic molecules. In addition to those described herein, other exemplary fusogenic molecules and related methods are described, for example, in U.S. patent application Ser. No. 11/071,785, filed Mar. 2, 2005 (published as U.S. Patent Application Publication 2005-0238626), and in U.S. patent application Ser. No. 11/446,353, filed Jun. 1, 2006 (published as U.S. Patent Application Publication 2007/0020238), each of which is incorporated herein by reference in its entirety.

The affinity molecule is one that binds a dendritic cell surface marker. In preferred embodiments, the affinity molecule binds DC-SIGN with specificity. That is, the binding of the affinity molecule to DC-SIGN is preferably specific enough to avoid undesired side effects due to interaction with markers on other cell types. The affinity molecule can be, for example, an antibody that specifically binds DC-SIGN.

In some preferred embodiments, the fusion molecule is a viral glycoprotein that mediates fusion or otherwise facilitates delivery of the gene of interest to the dendritic cell, preferably in response to the low pH environment of the endosome. The fusion molecule preferably exhibits fast enough kinetics that the viral contents can empty into the cytosol before the degradation of the viral particle. In addition, the fusion molecule can be modified to reduce or eliminate any binding activity and thus reduce or eliminate any non-specific binding. That is, by reducing the binding ability of the fusion molecules, binding of the virus to the target cell is determined predominantly or entirely by the affinity molecule, allowing for high target specificity and reducing undesired effects. Exemplary fusion molecules include, but are not limited to viral glycoproteins derived from one of the following viruses: Sindbis virus, influenza virus, Lassa fever virus, tick-borne encephalitis virus, Dengue virus, Hepatitis B virus, Rabies virus, Semliki Forest virus, Ross River virus, Aura virus, Borna disease virus, Hantaan virus, and SARS-CoV virus.

The methods disclosed herein can be readily adopted to utilize any of a variety of molecules as targeting molecules, or as fusogenic molecules in combination with affinity molecules. In addition to those described herein, other exemplary molecules and related methods are described, for example, in U.S. Patent Application Publication 2005/0238626 and in U.S. Patent Application Publication 2007/0020238.

Vectors

In a preferred embodiment, one or more vectors are used to introduce polynucleotide sequences into a packaging cell line for the preparation of a recombinant virus as described herein. The vectors can contain polynucleotide sequences encoding the various components of the recombinant virus including the DC-specific targeting molecule, a gene(s) of interest (typically encoding an antigen), and any components necessary for the production of the virus that are not provided by the packaging cell. In some embodiments, vectors containing polynucleotide sequences that encode a DC-specific affinity molecule and a separate fusogenic molecule are substituted for a vector that encodes a DC-specific targeting molecule in the preparation of the virus. Eukaryotic cell expression vectors are well known in the art and are available from a number of commercial sources.

In one aspect of the invention, vectors containing polynucleotide sequences that encode DC maturation factors are also used in the preparation of the virus. These polynucleotides are typically under the control of one or more regulatory elements that direct the expression of the coding sequences in the packaging cell and the target cell, as appropriate. Several lines of evidence have shown the success of DC vaccination is dependent on the maturation state of DCs (Banchereau, J and Palucka, A. K. Nat. Rev. Immunol. 5:296-306 (2005); Schuler, G. et al. Curr. Opin. Immunol. 15:138-147 (2003); Figdor, C. G. et al. Nat. Med. 10:475-480 (2004), each of which is incorporated herein by reference). Maturation can transform DCs from cells actively involved in antigen capture into cells specialized for T cell priming. In one aspect of the invention, the vector includes genes that encode the stimulatory molecules to trigger the desired DC maturation. Such stimulatory molecules are also referred to as maturation factors or maturation stimulatory factors.

In some embodiments, packaging cells are co-transfected with a viral vector encoding an antigen and one or more additional vectors. For example, in addition to the viral vector encoding an antigen, a second vector preferably carries a gene encoding a targeting molecule that binds dendritic cells, such as SVGmu, as described elsewhere in the application. In some preferred embodiments, the targeting molecule encodes a modified viral glycoprotein that is specific for DC-SIGN. The modified viral glycoprotein is preferably one derived from at least one of the following: Sindbis virus, influenza virus, Lassa fever virus, tick-borne encephalitis virus, Dengue virus, Hepatitis B virus, Rabies virus, Semliki Forest virus, Ross River virus, Aura virus, Borna disease virus, Hantaan virus, and SARS-CoV virus. In some embodiments, the viral vector encoding an antigen also includes a polynucleotide sequence encoding a DC maturation factor. In some embodiments, the polynucleotide sequence encoding a DC maturation factor is contained in first vector that is co-transfected with the viral vector encoding an antigen and the one or more additional vectors into the packaging cells.
In other embodiments, one or more multicistronic expression vectors are utilized that include two or more of the elements (e.g., the viral genes, gene(s) of interest, the targeting molecule, DC maturation factors) necessary for production of the desired recombinant virus in packaging cells. The use of multicistronic vectors reduces the total number of vectors required and thus avoids the possible difficulties associated with coordinating expression from multiple vectors. In a multicistronic vector the various elements to be expressed are operably linked to one or more promoters (and other expression control elements as necessary). In other embodiments a multicistronic vector comprising a gene of interest, a reporter gene, and viral elements is used. The gene of interest typically encodes an antigen and, optionally, a DC maturation factor. Such a vector may be cotransfected, for example, along with a vector encoding a targeting molecule, or, in some embodiments, a multicistronic vector encoding both an FM and an affinity molecule. In some embodiments the multicistronic vector comprises a gene encoding an antigen, a gene encoding a DC maturation factor and viral elements.

Each component to be expressed in a multicistronic expression vector may be separated, for example, by an IRES element or a viral 2A element, to allow for separate expression of the various proteins from the same promoter. IRES elements and 2A elements are known in the art (U.S. Pat. Nos. 4,937,190; de Felice et al. 2004. *Traffic* 5: 616-626, each of which is incorporated herein by reference in its entirety). In one embodiment, oligonucleotides encoding furin cleavage site sequences (RAKR) (Fang et al. 2005. *Nat. Biotechnol.* 23: 584-590, which is incorporated herein by reference in its entirety) linked with 2A-like sequences from foot-and-mouth diseases virus (FMDV), equine influenza virus (ERAV), and thosea aspina virus (TAV) (Szymczak et al. 2004. *Nat. Biotechnol.* 22: 589-594, which is incorporated herein by reference in its entirety) are used to separate genetic elements in a multicistronic vector. The efficiency of a particular multicistronic vector for use in synthesizing the desired recombinant virus can readily be tested by detecting expression of each of the genes using standard protocols.

Generation of the vector(s) may be accomplished using any suitable genetic engineering techniques known in the art, including, without limitation, the standard techniques of restriction endonuclease digestion, ligation, transformation, plasmid purification, and DNA sequencing, for example as described in Sambrook et al. (1989. *Molecular Cloning: A Laboratory Manual.* Cold Spring Harbor Laboratory Press, N.Y.), Coffin et al. (Retroviruses. Cold Spring Harbor Laboratory Press, N.Y. (1997)) and “RNA Viruses: A Practical Approach” (Alan J. Cann, Ed., Oxford University Press, 2000), each of the foregoing which is incorporated herein by reference in its entirety.

The vector(s) may incorporate sequences from the genome of any known organism. The sequences may be incorporated in their native form or may be modified in any way. For example, the sequences may comprise insertions, deletions or substitutions.

Expression control elements that may be used for regulating the expression of the components are known in the art and include, but are not limited to, inducible promoters, constitutive promoters, secretion signals, enhancers and other regulatory elements.

In one embodiment, a vector can include a prokaryotic replicon, i.e., a DNA sequence having the ability to direct autonomous replication and maintenance of the recombinant DNA molecule extrachromosomally in a prokaryotic host cell, such as a bacterial host cell, transformed therewith. Such replicons are well known in the art. In addition, vectors that include a prokaryotic replicon may also include a gene whose expression confers a detectable marker such as a drug resistance. Typical bacterial drug resistance genes are those that confer resistance to ampicillin or tetracycline.

The vector(s) may include one or more genes for selectable markers that are effective in a eukaryotic cell, such as a gene for a drug resistance selection marker. This gene encodes a factor necessary for the survival or growth of transformed host cells grown in a selective cell culture medium. Host cells not transformed with the vector containing the selection gene will not survive in the culture medium. Typical selection genes encode proteins that confer resistance to antibiotics or other toxins, e.g., ampicillin, neomycin, methotrexate, or tetracycline, complement auxotrophic deficiencies, or supply critical nutrients withheld from the media. The selectable marker can optionally be present on a separate plasmid and introduced by co-transfection.

Vectors will usually contain a promoter that is recognized by the packaging cell and that is operably linked to the polynucleotide(s) encoding the targeting molecule, viral components, and the like. A promoter is an expression control element formed by a nucleic acid sequence that permits binding of RNA polymerase and transcription to occur. Promoters are untranslated sequences that are located upstream (5') to the start codon of a structural gene (generally within about 100 to 1000 bp) and control the transcription and translation of the antigen-specific polynucleotide sequence to which they are operably linked. Promoters may be inducible or constitutive. The activity of the inducible promoters is induced by the presence or absence of biotic or abiotic factors. Inducible promoters can be a useful tool in genetic engineering because the expression of genes to which they are operably linked can be turned on or off at certain stages of development of an organism or in a particular tissue. Inducible promoters can be grouped as chemically-regulated promoters, and physically-regulated promoters. Typical chemically-regulated promoters include, but are not limited to, alcohol-regulated promoters (e.g. alcohol dehydrogenase I (aLa) gene promoter), tetracycline-regulated promoters (e.g. tetracycline-responsive promoter), steroid-regulated promoter (e.g. rat glucocorticoid receptor (GR)-based promoter, human estrogen receptor (ER)-based promoter, moth ec dysyne receptor-based promoter, and the promoters based on the steroid/retinoid/ thyroid receptor superfamily), metal-regulated promoters (e.g. metallothionein gene-based promoters), and pathogenesis-related promoters (e.g. Arabidopsis and maize pathogen-related (PR) protein-based promoters). Typical physically-regulated promoters include, but are not limited to, temperature-regulated promoters (e.g. heat shock promoters), and light-regulated promoters (e.g. soybean SSU promoter). Other exemplary promoters are described elsewhere, for example, in *hyper text transfer protocol/://www.patenfles.net/daisy/promoters/768/271.html*, which is incorporated herein by reference in its entirety.

One of skill in the art will be able to select an appropriate promoter based on the specific circumstances. Many different promoters are well known in the art, as are methods for operably linking the promoter to the gene to be expressed. Both native promoter sequences and many heterologous promoters may be used to direct expression in the packaging cell and target cell. However, heterologous promoters are preferably, as they generally permit greater transcription and higher yields of the desired protein as compared to the native promoter.

The promoter may be obtained, for example, from the genomes of viruses such as polyoma virus, fowlpox virus, adenovirus, bovine papilloma virus, avian sarcoma virus,
cytomegalovirus, a retrovirus, hepatitis-B virus and Simian Virus 40 (SV40). The promoter may also be, for example, a heterologous mammalian promoter, e.g., the actin promoter or an immunoglobulin promoter, a heat-shock promoter, or the promoter normally associated with the native sequence, provided such promoters are compatible with the target cell. In one embodiment, the promoter is the naturally occurring viral promoter in a viral expression system. In some embodiments, the promoter is a dendritic cell-specific promoter. The dendritic cell-specific promoter can be, for example, CD11c promoter.

Transcription may be increased by inserting an enhancer sequence into the vector(s). Enhancers are typically cis-acting elements of DNA, usually about 10 to 300 bp in length, that act on a promoter to increase its transcription. Many enhancer sequences are now known from mammalian genes (globin, elastase, albumin, α-fetoprotein, and insulin). Preferably an enhancer from a eukaryotic cell will be used. Examples include the SV40 enhancer on the late side of the replication origin (bp 100-270), the cytomegalovirus early promoter enhancer, the poliovirus enhancer on the late side of the replication origin, and adenovirus enhancer. The enhancer may be spliced into the vector at a position 5′ or 3′ to the antigen-specific polynucleotide sequence, but is preferably located at a site 5′ from the promoter.

Expression vectors will also contain sequences necessary for the termination of transcription and for stabilizing the mRNA. These sequences are often found in the 5′ and, occasionally 3′, untranslated regions of eukaryotic or viral DNAs or cDNAs and are well known in the art. Plasmid vectors containing one or more of the components described above are readily constructed using standard techniques well known in the art.

For analysis to confirm correct sequences in plasmids constructed, the plasmid may be replicated in E. coli, purified, and analyzed by restriction endonuclease digestion, and/or sequenced by conventional methods.

Vectors that provide for transient expression in mammalian cells may also be used. Transient expression involves the use of an expression vector that is able to replicate efficiently in a host cell, such that the host cell accumulates many copies of the expression vector and, in turn, synthesizes high levels of the polypeptide encoded by the antigen-specific polynucleotide in the expression vector. See Sambrook et al., supra, pp. 16.17-16.22.

Other vectors and methods suitable for adaptation to the expression of the viral polypeptides are well known in the art and are readily adapted to the specific circumstances.

Using the teachings provided herein, one of skill in the art will recognize that the efficiency of a particular expression system can be tested by transforming packaging cells with a vector comprising a gene encoding a reporter protein and measuring the expression using a suitable technique, for example, measuring fluorescence from a green fluorescent protein conjugate. Suitable reporter genes are well known in the art.

Transformation of packaging cells with vectors of the present invention is accomplished by well-known methods, and the method to be used is not limited in any way. A number of non-viral delivery systems are known in the art, including, for example, electroporation, lipid-based delivery systems including liposomes, delivery of “naked” DNA, and delivery using polycyclodextrin compounds, such as those described in Schatzlein A G. (2001). Non-Viral Vectors in Cancer Gene Therapy: Principles and Progresses. Anticancer Drugs, which is incorporated herein by reference in its entirety. Cationic lipid or salt treatment methods are typically employed, see, for example, Graham et al. (1973). Virol. 52:456; Wigler et al. (1979). Proc. Natl. Acad. Sci. USA 76:1373-76), each of the foregoing which is incorporated herein by reference in its entirety. The calcium phosphate precipitation method is preferred. However, other methods for introducing the vector into cells may also be used, including nuclear microinjection and bacterial protoplast fusion.

Viral Vector and Packaging Cells

One of the vectors encodes the core virus (the “viral vector”). There are a large number of available viral vectors that are suitable for use with the invention, including those identified for human gene therapy applications, such as those described by Pfeifer and Verma (Pfeifer, A. and I. M. Verma. 2001. Annu. Rev. Genomics Hum. Genet. 2:177-211, which is incorporated herein by reference in its entirety). Suitable viral vectors include vectors based on RNA viruses, such as retrovirus-derived vectors, e.g., MuLV-derived vectors, and include more complex retrovirus-derived vectors, e.g., lentivirus-derived vectors. Human Immunodeficiency viruses (HIV-1)-derived vectors belong to this category. Other examples include lentivirus vectors derived from HIV-2, feline immunodeficiency virus (FIV), equine infectious anemia virus, simian immunodeficiency virus (SIV) and maedi/visna virus.

The viral vector preferably comprises one or more genes encoding components of the recombinant virus as well as one or more genes of interest, such as, for example, an antigen and/or a DC maturation factor. The viral vector may also comprise genetic elements that facilitate expression of the gene of interest in a target cell, such as promoter and enhancer sequences. In order to prevent replication in the target cell, endogenous viral genes required for replication may be removed and provided separately in the packaging cell line.

In a preferred embodiment the viral vector comprises an intact retroviral 5′LTR and a self-inactivating 3′LTR.

Any method known in the art may be used to produce infectious retroviral particles whose genome comprises an RNA copy of the viral vector. To this end, the viral vector (along with other vectors encoding the gene of interest, the DC-specific targeting molecule, etc.) is preferably introduced into a packaging cell line that packages viral genomic RNA based on the viral vector into viral particles.

The packaging cell line provides the viral proteins that are required in trans for the packaging of the viral genomic RNA into viral particles. The packaging cell line may be any cell line that is capable of expressing retroviral proteins. Preferred packaging cell lines include 293 (ATCC CCL X), Hela (ATCC CCL 2), D17 (ATCC CCL 183), MDCK (ATCC CCL 34), BHK (ATCC CCL-10) and C217 (ATCC CRL 1430). The packaging cell line may stably express the necessary viral proteins. Such a packaging cell line is described, for example, in U.S. Pat. No. 6,218,181, which is incorporated herein by reference in its entirety. Alternatively a packaging cell line may be transiently transfected with plasmids comprising nucleic acid that encodes one or more necessary viral proteins, including the DC-specific targeting molecule (or alternatively, a DC-specific affinity molecule and fusogenic molecule) along with the viral vectors encoding the gene of interest, which typically encodes an antigen and can additionally encode a DC maturation factor.

Viral particles comprising a polynucleotide with the gene of interest and a targeting molecule that is specific for dendritic cells are collected and allowed to infect the target cell. In some preferred embodiments, the virus is pseudotyped to achieve target cell specificity. Methods for pseudotyping are well known in the art and also described herein.
In one embodiment, the recombinant virus used to deliver the gene of interest is a modified lentivirus and the viral vector is based on a lentivirus. As lentiviruses are able to infect both dividing and non-dividing cells, in this embodiment it is not necessary for target cells to be dividing (or to stimulate the target cells to divide).

In another embodiment, the recombinant virus used to deliver the gene of interest is a modified gammaretrovirus and the viral vector is based on a gammaretrovirus.

In another embodiment, the vector is based on a modified Moloney virus, for example a Moloney Murine Leukemia Virus. The viral vector can also be based on a hybrid virus such as that described in Choi, J. K., et al. (2001) Stem Cells 19, No. 3, 236-246, which is incorporated herein by reference in its entirety.

A DNA viral vector may be used, including, for example adenovirus-based vectors and adeno-associated viruses (AAVs)-based vectors. Likewise, retroviral-adenoviral vectors also can be used with the methods of the invention.

Other vectors also can be used for polynucleotide delivery including vectors derived from herpes simplex viruses (HSV), including ampicilin vectors, replication-defective HSV and attenuated HSV (Krisky D M, Marconci PC, Oligino T J, Rouse R J, Fink D J, et al. 1998. Development of herpes simplex virus replication-defective multigene vectors for combination gene therapy applications. Gene Ther. 5: 1517-30, which is incorporated herein by reference in its entirety).

Other vectors that have recently been developed for gene therapy uses can also be used with the methods of the invention. Such vectors include those derived from baculoviruses and alpha-viruses. (Jolly D J, 1999. Emerging viral vectors, pp 209-40 in Friedmann T, ed. 1999. The development of human gene therapy. New York: Cold Spring Harbor Lab, which is incorporated herein by reference in its entirety).

In some preferred embodiments, the viral construct comprises sequences from a lentivirus genome, such as the HIV genome or the SIV genome. The viral construct preferably comprises sequences from the 5' and 3' LTRs of a lentivirus. More preferably the viral construct comprises the R and U5 sequences from the 5' LTR of a lentivirus and an inactivated or self-inactivating 3' LTR from a lentivirus. The LTR sequences may be LTR sequences from any lentivirus from any species. For example, they may be LTR sequences from HIV, SIV, FIV or BIV. Preferably the LTR sequences are HIV LTR sequences.

The viral construct preferably comprises an inactivated or self-inactivating 3' LTR. The 3' LTR may be made self-inactivating by any method known in the art. In the preferred embodiment the U3 element of the 3' LTR contains a deletion of its enhancer sequence, preferably the TATA box, Sp1 and NF-kappa B sites. As a result of the self-inactivating 3' LTR, the provirus that is integrated into the host cell genome will comprise an inactivated 5' LTR.

Optionally, the U3 sequence from the lentiviral 5' LTR may be replaced with a promoter sequence in the viral construct. This may increase the tier of virus recovered from the packaging cell line. An enhancer sequence may also be included. Any enhancer/promoter combination that increases expression of the viral RNA genome in the packaging cell line may be used. In a preferred embodiment the CMV enhancer promoter sequence is used.

In some preferred embodiments, the viral construct comprises sequences from a gammaretrovirus genome, such as the mouse stem cell virus (MSCV) genome or the murine leukemia virus (MLV) genome. The viral construct preferably comprises sequences from the 5' and 3' LTRs of a gammaretrovirus. The LTR sequences may be LTR sequences from any gammaretrovirus from any species. For example, they may be LTR sequences from mouse stem cell virus (MSCV), murine leukemia virus (MLV), feline leukemia virus (FLV), feline sarcoma virus (FAV), and avian reticuloendotheliosis viruses (ARV). Preferably the LTR sequences are MSCV and MLV LTR sequences.

In some embodiments, the viral construct preferably comprises an inactivated or self-inactivating 3' LTR. The 3' LTR may be made self-inactivating by any method known in the art. In the preferred embodiment the U3 element of the 3' LTR contains a deletion of its enhancer sequence, preferably the TATA box, Sp1 and NF-kappa B sites. As a result of the self-inactivating 3' LTR, the provirus that is integrated into the host cell genome will comprise an inactivated 5' LTR.

Optionally, the U3 sequence from the gammaretroviral 5' LTR may be replaced with a promoter sequence in the viral construct. This may increase the tier of virus recovered from the packaging cell line. An enhancer sequence may also be included. Any enhancer/promoter combination that increases expression of the viral RNA genome in the packaging cell line may be used. In a preferred embodiment the CMV enhancer/promoter sequence is used.

The viral construct generally comprises a gene that encodes an antigen that is desirable to be expressed in one or more target cells. Preferably the gene of interest is located between the 5' LTR and 3' LTR sequences. Further, the gene of interest is preferably in a functional relationship with other genetic elements, for example transcription regulatory sequences such as promoters and/or enhancers, to regulate expression of the gene of interest in a particular manner once the gene is incorporated into the target cell. In certain embodiments, the useful transcriptional regulatory sequences are those that are highly regulated with respect to activity, both temporally and spatially.

In some embodiments, the gene of interest is in a functional relationship with internal promoter/enhancer regulatory sequences. An "internal" promoter/enhancer is one that is located between the 5' LTR and 3' LTR sequences. Further, the gene of interest is preferably in a functional relationship with other genetic elements, for example transcription regulatory sequences such as promoters and/or enhancers, to regulate expression of the gene of interest in a particular manner once the gene is incorporated into the target cell. In certain embodiments, the useful transcriptional regulatory sequences are those that are highly regulated with respect to activity, both temporally and spatially.

The internal promoter/enhancer is preferably selected based on the desired expression pattern of the gene of interest and the specific properties of known promoters/enhancers.

Thus, the internal promoter may be a constitutive promoter. Non-limiting examples of constitutive promoters that may be used include the promoter for ubiquitin, CMV (Karayiann et al. 1989. J. Exp. Med. 169:13, which is incorporated herein by reference in its entirety), beta-actin (Gunning et al. 1989. Proc. Natl. Acad. Sci. USA 84:4831-4835, which is incorpo-
27

Alternatively, the promoter may be a tissue specific promoter. In some preferred embodiments, the promoter is a target cell-specific promoter. For example, the promoter can be the dendritic cell-specific promoter CD11c (Masood, R., et al. 2001. Int J Mol Med 8:335-343; Somalia, N. V., et al. 1995. Proc Acad Sci USA 92:7570-7574, each of which is incorporated herein by reference in its entirety.) In addition, promoters may be selected to allow for inducible expression of the gene. A number of systems for inducible expression are known in the art, including the tetracycline responsive system and the lac operator-repressor system. It is also contemplated that a combination of promoters may be used to obtain the desired expression of the gene of interest. The skilled artisan will be able to select a promoter based on the desired expression pattern of the gene in the organism and/or the target cell of interest.

In some embodiments the viral construct preferably comprises at least one RNA Polymerase II or III promoter. The RNA Polymerase II or III promoter is operably linked to the gene of interest and can also be linked to a termination sequence. In addition, more than one RNA Polymerase II or III promoters may be incorporated.

RNA polymerase II and III promoters are well known to one of skill in the art. A suitable range of RNA polymerase III promoters can be found, for example, in Pauls and White. Nucleic Acids Research., Vol 28, pp 1283-1298 (2000), which is incorporated herein by reference in its entirety. The definition of RNA polymerase II or III promoters, respectively, also include any synthetic or engineered DNA fragment that can direct RNA polymerase II or III, respectively, to transcribe its downstream RNA coding sequences. Further, the RNA polymerase II or III (Pol II or III) promoter or promoters used as part of the viral vector can be inducible. Any suitable inducible Pol II or III promoter can be used with the methods of the invention. Particularly suited Pol II or III promoters include the tetracycline responsive promoters provided in Ohkawa and Taira (1991). Nucleic Acids Research., Vol 29, pp 1672-1682 (2001), each of which is incorporated herein by reference in its entirety.

An internal enhancer may also be present in the viral construct to increase expression of the gene of interest. For example, the CMV enhancer (Karasuyama et al. 1989. J. Exp. Med. 169:13, which is incorporated herein by reference in its entirety) may be used. In some embodiments, the CMV enhancer can be used in combination with the chicken β-actin promoter. One of skill in the art will be able to select the appropriate enhancer based on the desired expression pattern.

The polynucleotide or gene of interest is not limited in any way and includes any nucleic acid that the skilled practitioner desires to have integrated, transcribed, translated, and/or expressed in the target cell. In some embodiments, the polynucleotide can be a gene that encodes an antigen against which an immune response is desired. In some embodiments, the polynucleotide can be a gene encoding a small inhibiting RNA (siRNA) or a microRNA (miRNA) of interest that down-regulates expression of a molecule. For example, the gene encoding an siRNA or a microRNA can be used to down-regulate expression of negative regulators in a cell, including those that inhibit activation or maturation of dendritic cells. siRNAs and microRNAs are known in the art and described elsewhere (Shen, L. et al. 2004. Nat Biotech 22(12): 1546-1553; Zhou, H. et al. 2006. Biochemical and Biophysical Research Communications 347:200-207; Song, X-T., et al. 2006. PLoS Medicine 3(1):e11; Kobayashi, T. and A. Yoshimura. 2005. TRENDS in Immunology 26(4):177-179; Taganov, K., et al. 2007. Immunity 26:133-137; Dahlberg, J. E. and E. Lund. 2007. Sc1. STKE 387:pe25, each of which is incorporated herein by reference in its entirety).

In addition, in some embodiments, the polynucleotide can contain more than one gene of interest, which can be placed in functional relationship with the viral promoter. The gene of interest can encode a protein, a siRNA, or a microRNA. In some embodiments, the polynucleotide to be delivered can comprise multiple genes encoding at least one protein, at least one siRNA, at least one microRNA, or any combinations thereof. For example, the polynucleotide to be delivered can include one or more genes that encode one or more antigens against which an immune response is desired. The one or more antigens can be associated with a single disease or disorder, or the can be associated with multiple diseases and/or disorders. In some embodiments, a gene encoding an immune regulatory protein can be constructed with a primary gene encoding an antigen against which an immune response is desired, and the combination can elicit and regulate the immune response to the desired direction and magnitude. In some embodiments, a gene encoding an siRNA or microRNA can be constructed with a primary gene encoding an antigen against which an immune response is desired, and the combination can regulate the scope of the immune response. (See, for example, embodiments of polynucleotides in FIG. 24c and FIG. 24d, with accompanying sequences in SEQ ID NO: 9 and SEQ ID NO: 10, respectively.) In some embodiments, a gene encoding a marker protein can be placed after a primary gene of interest to allow for identification of cells that are expressing the desired protein. In one embodiment a fluorescent marker protein, preferably green fluorescent protein (GFP), is incorporated into the construct along with the gene of interest (typically encoding an antigen). If more than one gene is included, internal ribosomal entry site (IRES) sequences, or 2A elements are also preferably included, separating the primary gene of interest from a reporter gene and/or any other gene of interest. The IRES or 2A sequences may facilitate the expression of the reporter gene, or other genes.

The viral construct may also contain additional genetic elements. The types of elements that may be included in the construct are not limited in any way and will be chosen by the skilled practitioner to achieve a particular result. For example, a signal that facilitates nuclear entry of the viral genome in the target cell may be included. An example of such a signal is the HIV-1 flap signal.

Further, elements may be included that facilitate the characterization of the provirus integration site in the target cell. For example, a tRNA amber suppressor sequence may be included in the construct.

In addition, the construct may contain one or more genetic elements designed to enhance expression of the gene of interest. For example, a woodchuck hepatitis virus responsive element (WRE) may be placed into the construct (Zufferey et al. 1999. J. Virol. 74:3668-3681; Deglon et al. 2000. Hum. Gene Ther. 11:179-190, each of which is incorporated herein by reference in its entirety).

A chicken β-globin insulator may also be included in the viral construct. This element has been shown to reduce the chance of silencing the integrated provirus in the target cell due to methylation and heterochromatinization effects. In addition, the insulator may shield the internal enhancer, pro-
motor and exogenous gene from positive or negative positional effects from surrounding DNA at the integration site on the chromosome.

Any additional genetic elements are preferably inserted 3' of the gene of interest.

In a specific embodiment, the viral vector comprises: a cytomegalovirus (CMV) enhancer/promoter sequence; the R and U5 sequences from the HIV 5'LTR; the HIV-1 LTR signal; an internal enhancer; an internal promoter; a gene of interest; the woodchuck hepatitis virus responsive element; a RNA amber suppressor sequence; a U3 element with a deletion of its enhancer sequence; the chicken beta-globin insulator; and the R and U5 sequences of the 3' LTR.

The viral construct is preferably cloned into a plasmid that may be transfected into a packaging cell line. The preferred plasmid preferably comprises sequences useful for replication of the plasmid in bacteria.

Delivery of the Virus

The virus may be delivered to a target cell in any way that allows the virus to contact the target dendritic cells (DCs) in which delivery of a polynucleotide of interest is desired. In preferred embodiments, a suitable amount of virus is introduced into an animal directly (in vivo), for example through injection into the body. In some preferred embodiments, the viral particles are injected into a mammal's peripheral blood stream. In other preferred embodiments, the viral particles are injected into a mammal through intra-dermal injection, subcutaneous injection, intra-peritoneal cavity injection, or intravenous injection. The virus may be delivered using a subdermal injection device such the devices disclosed in U.S. Pat. Nos. 7,241,275, 7,115,108, 7,108,679, 7,083,599, 7,083,592, 7,047,070, 6,971,999, 6,808,506, 6,780,171, 6,776,776, 6,689,118, 6,670,349, 6,569,143, 6,494,865, 5,997,501, 5,848,991, 5,328,483, 5,279,552, 4,886,499, all of which are incorporated by reference in their entirety for all purposes. Other injection locations also are suitable, such as directly into organs comprising target cells. For example intra-lymph node injection, intra-spleen injection, or intra-bone marrow injection may be used to deliver virus to the lymph node, the spleen and the bone marrow, respectively. Depending on the particular circumstances and nature of the target cells, introduction can be carried out through other means including for example, inhalation, or direct contact with epithelial tissues, for example those in the eye, mouth or skin.

In other embodiments, target cells are provided and contacted with the virus in vitro, such as in culture plates. The target cells are ideally dendritic cells obtained from a healthy subject or a subject in need of treatment. Preferably, the target cells are dendritic cells obtained from a subject in whom it is desired to stimulate an immune response to an antigen. Methods to obtain cells from a subject are well known in the art. The virus may be suspended in media and added to the wells of a culture plate, tube or other container. The media containing the virus may be added prior to the plating of the cells or after the cells have been plated. Preferably cells are incubated in an appropriate amount of media to provide viability and to allow for suitable concentrations of virus in the media such that infection of the host cell occurs.

The cells are preferably incubated with the virus for a sufficient amount of time to allow the virus to infect the cells. Preferably the cells are incubated with virus for at least 1 hour, more preferably at least 5 hours and even more preferably at least 10 hours.

In both in vivo and in vitro delivery embodiments, any concentration of virus that is sufficient to infect the desired target cells may be used, as can be readily determined by the skilled artisan. When the target cell is to be cultured, the concentration of the viral particles is at least 1 PFU/μl, more preferably at least 10 PFU/μl, even more preferably at least 400 PFU/μl and even more preferably at least 1 x 10^4 PFU/μl.

In some embodiments, following infection with the virus in vitro, target cells can be introduced (or re-introduced) into an animal. In some embodiments, the cells can be introduced into the dermis, under the dermis, or into the peripheral blood stream. The cells introduced into an animal are preferably cells derived from that animal, to avoid an adverse immune response. Cells also can be used that are derived from a donor animal having a similar immune background. Other cells also can be used, including those designed to avoid an adverse immunogenic response.

The target cells may be analyzed, for example for integration, transcription and/or expression of the polynucleotide or gene(s) of interest, the number of copies of the gene integrated, and the location of the integration. Such analysis may be carried out at any time and may be carried out by any methods known in the art. Subjects in which a recombinant virus or virus-infected DCs are administered can be analyzed for location of infected cells, expression of the virus-delivered polynucleotide or gene of interest, stimulation of an immune response, and monitored for symptoms associated with a disease or disorder by any methods known in the art.

The methods of infecting cells disclosed above do not depend upon individual-specific characteristics of the cells. As a result, they are readily extended to all mammals. In some embodiments the recombinant virus is delivered to a human or to human dendritic cells. In other embodiments, the recombinant virus is delivered to a mouse or to mouse dendritic cells. In still other embodiments, the recombinant virus is delivered to an animal other than a human or a mouse, or to dendritic cells from an animal other than a human or a mouse.

As discussed above, the recombinant virus can be pseudotyped to confer upon it a broad host range as well as target cell specificity. One of skill in the art would also be aware of appropriate internal promoters to achieve the desired expression of a polynucleotide or gene of interest in a particular animal species. Thus, one of skill in the art will be able to modify the method of infecting dendritic cells derived from any species.

The recombinant virus can be evaluated to determine the specificity of the targeting molecule incorporated into the virus that targets dendritic cells. For example, a mixed population of bone marrow cells can be obtained from a subject and cultured in vitro. The recombinant virus can be administered to the mixed population of bone marrow cells, and expression of a reporter gene incorporated into the virus can be assayed in the cultured cells. In some embodiments, at least about 50%, more preferably at least about 60%, 70%, 80% or 90%, still more preferably at least about 95% of transduced cells in the mixed cell population are dendritic cells that express DC-SIGN.

Therapy

The methods of the present invention can be used to prevent or treat a wide variety of diseases or disorders, particularly those for which activation of an immune response in a patient would be beneficial. Many such diseases are well known in the art. For example, diseases or disorders that are amenable to treatment or prevention by the methods of the present invention include, without limitation, cancers, autoimmune diseases, and infections, including viral, bacterial, fungal and parasitic infections. In embodiments of the invention, a disease is treated by using recombinant viruses to deliver a gene of interest to dendritic cells, wherein expression of the gene produces a disease-specific antigen and leads
to stimulation of antigen-specific cellular immune responses and humoral immune responses.

In embodiments of the invention, a recombinant virus is used to deliver polynucleotides encoding an antigen against which an immune response is desired to dendritic cells. In some embodiments, the delivery can be achieved by contacting dendritic cells with the recombinant virus in vitro, whereupon the transduced dendritic cells are provided to a patient. In some embodiments, the delivery can be achieved by delivering the virus to a subject for contact with dendritic cells in vivo. The dendritic cells then stimulate antigen-specific T cells or B cells in a patient to induce cellular and humoral immune responses to the expressed antigen. In such embodiments, a patient that is suffering from a disease or disorder is treated by generating immune cells with a desired specificity.

Any antigen that is associated with a disease or disorder can be delivered to dendritic cells using a recombinant virus as described herein. An antigen that is associated with the disease or disorder is identified for preparation of a recombinant virus that targets dendritic cells. Antigens associated with many diseases and disorders are well known in the art. An antigen may be previously known to be associated with the disease or disorder, or may be identified by any method known in the art. For example, an antigen to a type of cancer from which a patient is suffering may be known, such as a tumor associated antigen. In one aspect, the invention provides a method to deliver genes encoding tumor antigens and other necessary proteins to DCs in vivo using engineered recombinant lentivirus. In other embodiments, an antigen related to the disease or disorder is identified from the patient to be treated. For example, an antigen associated with a tumor may be identified from the tumor itself by any method known in the art. Tumor associated antigens are not limited in any way and include, for example, antigens that are identified on cancerous cells from the patient to be treated.

Tumor associated antigens are known for a variety of cancers including, for example, prostate cancer and breast cancer. In some breast cancers, for example, the Her-2 receptor is overexpressed on the surface of cancerous cells. Exemplary tumor antigens include, but are not limited to: MAGE, BAGE, RAGE, and NY-ESO, which are nonmutated antigens expressed in the immune-privileged areas of the testes and in a variety of tumor cells; lineage-specific tumor antigens such as the melanocyte-melanoma lineage antigens MART-1/Melan-A, gp100, gp75, mda-7, tyrosinase and tyrosinase-related protein, or the prostate specific membrane antigen (PSMA) and prostate-specific antigen (PSA), which are antigens expressed in normal and neoplastic cells derived from the same tissue; epitope proteins/peptides derived from genes mutated in tumor cells and genes transcribed at different levels in tumor compared to normal cells, such as mutated ras, ber/abl rearrangement, Her2/neu, mutated or wild-type p53, cytochrome P450 1B1, and abnormally expressed intron sequences such as N-acetylglucosaminyltransferase-V; clonal rearrangements of immunoglobulin genes generating unique idiotypes in myeloma and B-cell lymphomas; epitope proteins/peptides derived from onco viral processes, such as human papilloma virus proteins E6 and E7; nonmutated onco fetal proteins with a tumor-selective expression, such as carchinoembryonic antigen and alpha-fetoprotein. A number of tumor associated antigens have been reviewed (see, for example, "Tumor-Antigens Recognized By T-Lymphocytes," Boon T, Cerottini J C, Vanendevynde B, Vanderbruggen P, Vanpeel A. Annual Review Of Immunology: 12: 337-365, 1994, "A listing of human tumor antigens recognized by T cells," Renkvist N, Castelli C, Robbins P F, Parmiani G, Cancer Immunology Immunotherapy 50: (1)3-15 Mar. 2001, each of which is incorporated herein by reference in its entirety.)

Examples of viral antigens include, but are not limited to, adenovirus polypeptides, alphavirus polypeptides, calicivirus polypeptides, e.g., a calicivirus capsid antigen, coronavirus polypeptides, distemper virus polypeptides, Ebola virus polypeptides, enterovirus polypeptides, flavivirus polypeptides, hepatitis virus (AE) polypeptides, e.g., a hepatitis B core or surface antigen, herpesvirus polypeptides, e.g., a herpes simplex virus or varicella zoster virus glycoprotein, immunodeficiency virus polypeptides, e.g., the human immunodeficiency virus envelope or protease, infectious peritonitis virus polypeptides, influenza virus polypeptides, e.g., an influenza A hemagglutinin, neuraminidase, or nucleoprotein, leukemia virus polypeptides, Marburg virus polypeptides, orthomyxovirus polypeptides, papilloma virus polypeptides, parainfluenza virus polypeptides, e.g., the hemagglutinin/ neuraminidase, paramyxovirus polypeptides, parvovirus polypeptides, pestivirus polypeptides, picorna virus polypeptides, e.g., a poliovirus capsid polypeptide, pox virus polypeptides, e.g., a vaccinia virus polypeptide, rabies virus polypeptides, e.g., a rabies virus glycoprotein G, reovirus polypeptides, retrovirus polypeptides, and rotavirus polypeptides.

Examples of fungal antigens include, but are not limited to, Absidia polypeptides, Acremonium polypeptides, Alternaria polypeptides, Aspergillus polypeptides, Basidiobolus polypeptides, Bipolaris polypeptides, Blastomyces polypeptides, Candida polypeptides, Coccioides polypeptides, Conidiobolus polypeptides, Cryptococcus polypeptides,

Examples of protozoan parasite antigens include, but are not limited to, Babesia polypeptides, Balantidium polypeptides, Besnoitia polypeptides, Cryptosporidium polypeptides, Eimeria polypeptides, Eucesthozoan polypeptides, Entamoeba polypeptides, Giardia polypeptides, Hammondia polypeptides, Haptozoa polypeptides, Isoxys polypeptides, Leishmania polypeptides, Mirospora polypeptides, Neospora polypeptides, Nosema polypeptides, Pentatrichomonas polypeptides, Plasmodium polypeptides, e.g., P. falciparum circumsporozoite (PfSP), sporozoite surface protein 2 (PfSP2), carboxy terminal of liver stage antigen 1 (PfLSA1 c-term), and exported protein 1 (PfExp-1), Pneumocystis polypeptides, Sarcozystis polypeptides, Schistosoma polypeptides, Theileria polypeptides, Toxoplasma polypeptides, and Trypanosoma polypeptides.

Examples of ectoparasite antigens include, but are not limited to, polypeptides (including protective antigens as well as allergens) from fleas; ticks, including hard ticks and soft ticks; flies, such as midges, mosquitoes, sand flies, black flies, horse flies, horn flies, deer flies, tsetse flies, stable flies, myiasis-causing flies and biting gnats; ants; spiders, lice; mites; and true bugs, such as bed bugs and kissing bugs.

Once an antigen has been identified and/or selected, a polynucleotide that encodes the desired antigen is identified. Preferably the polynucleotide comprises a cDNA. The polynucleotides encoding the antigen are preferably introduced into target dendritic cells using a recombinant virus, more preferably a recombinant lentivirus or gammaretrovirus, including a targeting molecule that binds DC-SIGN as described above. The recombinant virus first binds to the dendritic cell membrane by way of the DC-SIGN targeting molecule, and the viral core containing a polynucleotide encoding the antigen subsequently enters the cytoplasm. The polynucleotide (e.g., one encoding the antigen) is then preferentially integrated into the cell's genome and expressed. If contacted ex vivo, the target dendritic cells are then transferred back to the patient, for example by injection, where they interact with immune cells that are capable of generating an immune response against the desired antigen. In preferred embodiments, the recombinant virus is injected into the patient where it transduces the targeted dendritic cells in situ. The dendritic cells then express the particular antigen associated with a disease or disorder to be treated, and the patient is able to mount an effective immune response against the disease or disorder.

In some embodiments, the recombinant virus contains a polynucleotide sequence encoding more than one antigen, and upon transduction of a target dendritic cell, generates immune responses to the multitude of antigens delivered to the cell. In some embodiments, the antigens are related to a single disease or disorder. In other embodiments, the antigens are related to multiple diseases or disorders.

In inventions of the invention, DC maturation factors that activate and/or stimulate maturation of the DCs are delivered in conjunction with the recombinant virus carrying the polynucleotide or gene of interest. In some embodiments, the DCs are activated by delivery of DC maturation factors prior to delivery of the virus. In some embodiments, the DCs are activated by delivery of DC maturation factors after delivery of the virus. In some embodiments, the DCs are activated by delivery of DC maturation factors simultaneously with delivery of the virus. In some embodiments, DC maturation factors are provided together with administration of the virus. In other embodiments, DC maturation factors are provided separately from administration of the virus.

In certain embodiments, one or more DC maturation factors can be encoded by one or more genes that are contained in the virus and expressed after the virus transduces a dendritic cell. In some embodiments, the one or more genes encoding DC maturation factors can be included in a viral vector encoding an antigen. In further embodiments, the one or more genes encoding DC maturation factors can be included in a viral vector that encodes more than one antigen. In some embodiments, the one or more genes encoding DC maturation factors can be provided in a separate vector that is co-transfected with the viral vector encoding one or more antigens in a packaging cell line.

In other embodiments, the methods of the present invention can be used for adoptive immunotherapy in a patient. As described above, an antigen against which an immune response is desired is identified. A polynucleotide encoding the desired antigen is obtained and packaged into a recombinant virus. Target dendritic cells are obtained from the patient and transduced with a recombinant virus containing a polynucleotide that encodes the desired antigen. The dendritic cells are then transferred back into the patient.

Vaccination

As discussed above, various engineered targeting molecules that bind the DC-SIGN surface dendritic cell marker are contemplated for use in producing recombinant virus that delivers a gene encoding an antigen to DCs. The virus can be used to transduce DCs in vitro or in vivo for prevention of a disease or disorder. For example, no Sindbis virus envelope glycoprotein can be engineered to bind preferentially to DC-SIGN and used to pseudotype a recombinant virus. A gene
encoding an antigen against which an immune response is desired, such as for cancer (for example, Mart-1), or another disease/disorder (such as viral infection) may be delivered to DCs using the methods described herein. In some embodiments, multiple genes encoding multiple antigens can be delivered to DCs using the methods described herein, through the use of multiple viral vectors, or, preferably, a multistrionic vector system. The one or more genes for the one or more antigens may be accompanied by genes encoding stimulatory molecules (such as GM-CSF, IL-2, IL-4, IL-6, IL-7, IL-15, IL-21, IL-23, TNFα, B7.1, B7.2, 4-1BB, CD40 ligand (CD40L), drug-inducible CD40 (iCD40), and the like) and/or a reporter molecule (such as GFP, luciferase and the like) using multiple vectors or, preferably, a multistrionic vector system.

In some embodiments of the invention, human DCs are generated by obtaining CD34+ human hematopoietic progenitors and using an in vitro culture method as described elsewhere (e.g., Banchereau et al. Cell 106, 271-274 (2001)). Viruses bearing a targeting molecule that binds DC-SIGN are generated comprising a gene encoding an antigen against which an immune response is desired and are used to transduce human DCs. Transduction specificity and efficiency may be quantified by FACS. Maturation of DCs can be characterized by FACS analysis of up-regulation of surface markers such as MHC II.

In other embodiments, virus may be injected in vivo, where it contacts natural DCs and delivers a polynucleotide of interest, typically a gene encoding an antigen. The amount of viral particles is at least 5×10⁶ TU, and can be at least 1×10⁷ TU, at least 2×10⁷ TU, at least 3×10⁸, at least 4×10⁸ TU, or at least 5×10⁹ TU. At selected intervals, DCs from the recipient's lymphoid organs may be used to measure expression, for example, by observing marker expression, such as GFP or luciferase. T cells from lymph nodes and spleens of virus-treated recipients may be measured from the magnitude and durability of response to antigen stimulation. Tissue cells other than DCs, such as epithelial cells and lymphoid cells, may be analyzed for the specificity of in vivo gene delivery.

It is widely agreed that the most effective potential method to end the AIDS epidemic (and other viral diseases) is a vaccine. To date, no vaccination method against HIV has successfully passed a phase III trial. Thus, there is an urgent need for novel and effective vaccination strategies. In some embodiments of the invention, DC vaccination is used. A gene is cloned encoding a viral protein, such as those described above, into a viral vector. Patients are infected with viruses comprising a targeting molecule that binds DC-SIGN in DCs, preferably with specificity such that undesired side effects are avoided. The targeting molecule can be, for example, an engineered Sindbis virus envelope glycoprotein, and the administration of virus can be carried out, for example, by injection. In an animal model, molecularly cloned HIV reporter viruses (NFSKS-r-105AS, NL-r-lsAS) and clinical isolates may be used to challenge the animals by tail vein injection. Evidence of infection may be monitored over time in splenocytes, lymph nodes, and peripheral blood. PCR for HIV-gag protein and FACS for HAS in the reporter viruses may be used to test for viral integration and replication. Productive in situ DC vaccination may increase resistance to the HIV challenge. See Examples 17-20.

In some embodiments, dendritic cells transduced with a recombinant virus as described herein are provided for the prevention of or treatment of a disease or disorder. In preferred embodiments, the dendritic cells express an antigen against which an immune response is desired. The antigen is typically one that is not normally expressed in a dendritic cell but is expressed after the target cell is transduced with the recombinant virus containing a polynucleotide encoding the antigen. In some embodiments, the dendritic cells further express a DC maturation factor which is provided to the dendritic cell by a recombinant virus as described herein.

In some aspects of the invention, an adjuvant is administered in conjunction with a recombinant virus of the invention. The adjuvant may be administered with the recombinant virus, before the recombinant virus, or after the recombinant virus.

A variety of adjuvants can be used in combination with the recombinant virus of the invention to elicit an immune response to the antigen encoded by the recombinant virus. Preferred adjuvants include alum, 3 De-0-acetylated monophosphoryl lipid A (MPL) (see GB 220211). QS21 is a tetrapiene glycoside or saponin isolated from the bark of the Quillaja Saponaria Molina tree found in South America (see Kessler et al., In Vaccine Design: The Subunit and Adjuvant Approach (eds. Powell & Newman, Plenum Press, NY, 1995); U.S. Pat. No. 5,057,540). Other adjuvants are oil in water emulsions (such as squalene or peanut oil), optionally in combination with immune stimulants, such as monophosphoryl lipid A (see Stout et al., N. Engl. J. Med. 336, 86-91 (1997)). Another adjuvant is CpG (Bio-world Today, Nov. 15, 1998). Alternatively, Aβ can be coupled to an adjuvant. For example, a lipopeptide version of Aβ can be prepared by coupling palmitic acid or other lipids directly to the N-terminus of Aβ as described for hepatitis B antigen vaccination (Livingston, J. Immunol. 159, 138-1392 (1997)). However, such coupling should not substantially change the conformation of Aβ so as to affect the nature of the immune response thereto. Adjuvants can be administered as a component of a therapeutic composition with an active agent or can be administered separately, before, concurrently with, or after administration of the therapeutic agent.

A preferred class of adjuvants is aluminum salts (alum), such as aluminum hydroxide, aluminum phosphate, aluminum sulfate. Such adjuvants can be used with or without other specific immunostimulating agents such as MPL or 3-DMP, QS21, polymeric or monomeric amino acids such as polyglutamic acid or polylysine. Another class of adjuvants is oil-in-water emulsion formulations. Such adjuvants can be used with or without other specific immunostimulating agents such as muramyl peptides (e.g., N-acetylmuramyl-L-threonyl-D-isoglutamine (thr-MDP), N-acetyl-nor-muramyl-L-alanyl-D-isoglutamine (nor-MDP), N-acetylmuramyl-L-alanyl-D-isoglutaminyl-L-alanine-2-(1’-2’dipalmitoyl-sn-glycero-3-hydroxyphosphorylcholine)-ethylamine (MTP-PE), N-acetylglucosaminyl-N-acetylmuramyl-L-Ala-D-isoglu-L-Ala-dipalmitoylexylamine (DTP-DPP) Thermadex™, or other bacterial cell wall components. Oil-in-water emulsions include (a) MF59 (WO 90/14837), containing 5% Squalene, 0.5% Tween 80, and 0.5% Span 85 (optionally containing various amounts of MTP-PE) formulated into submicron particles using a microfluidizer such as Model 110Y microfluidizer (Microfluidics, Newton Mass.), (b) SAF, containing 10% Squalane, 0.4% Tween 80, 5% polyethylene-blocked polymer L121, and thr-MDP, either microfluidized into a submicron emulsion or vortexed to generate a larger particle size emulsion, and (c) Rib™ adjuvant system (RAS), (Ribi Immunochem, Hamilton, Mont.) containing 2% squalane, 0.2% Tween 80, and one or more bacterial cell wall components from the group consisting of monophosphoryl lipid A (MPL), trehalose dimycolate (TDM), and cell wall skeleton.
(CWS), preferably MPL+CWS (Detox™). Another class of preferred adjuvants is saponin adjuvants, such as Stimulon™ (QS21, Aquila, Worcester, Mass.) or particles generated therefrom such as ISCOMs (immunostimulating complexes) and ISCOMATRIX. Other adjuvants include Complete Freund’s Adjuvant (CFA) and Incomplete Freund’s Adjuvant (IFA). Other adjuvants include cytokines, such as interleukins (IL-1, IL-2, and IL-12), macrophage colony stimulating factor (M-CSF), tumor necrosis factor (TNF).

An adjuvant can be administered with the recombinant virus of the invention as a single composition, or can be administered before, concurrent with or after administration of the recombinant virus of the invention. Immunogen and adjuvant can be packaged and supplied in the same vial or can be packaged in separate vials and mixed before use. Immunogen and adjuvant are typically packaged with a label indicating the intended therapeutic application. If immunogen and/or adjuvant are packaged separately, the packaging typically includes instructions for mixing before use. The choice of an adjuvant and/or carrier depends on the stability of the vaccine containing the adjuvant, the route of administration, the dosing schedule, the efficacy of the adjuvant for the species being vaccinated, and, in humans, a pharmaceutically acceptable adjuvant is one that has been approved or is approved for human administration by pertinent regulatory bodies. For example, Complete Freund’s adjuvant is not suitable for human administration. Alum, MPL, and QS21 are preferred. Optionnally, two or more different adjuvants can be used simultaneously. Preferred combinations include alum with MPL, alum with QS21, MPL with QS21, and alum, QS21 and MPL together. Also, Incomplete Freund’s adjuvant can be used (Chang et al., *Advanced Drug Delivery Reviews* 32, 173-186 (1998)), optionally in combination with any of alum, QS21, and MPL and all combinations thereof.

Pharmaceutical Compositions and Kits

Also contemplated herein are pharmaceutical compositions and kits containing a recombinant virus provided herein and one or more components. Pharmaceutical compositions can include a recombinant virus provided herein and a pharmaceutical carrier. Kits can include the pharmaceutical compositions and/or combinations provided herein, and one or more components, such as instructions for use, a device for administering a compound to a subject, and a device for administering a compound to a subject.

1. Pharmaceutical Compositions

Provided herein are pharmaceutical compositions containing a virus provided herein and a suitable pharmaceutical carrier. Pharmaceutical compositions provided herein can be in various forms, e.g., in solid, liquid, powder, aqueous, or lyophilized form. Examples of suitable pharmaceutical carriers are known in the art. Such carriers and/or additives can be formulated by conventional methods and can be administered to the subject at a suitable dose. Stabilizing agents such as lipids, nucleoside inhibitors, polymers, and chelating agents can preserve the compositions from degradation within the body.

2. Kits

The recombinant viruses provided herein can be packaged as kits. Kits can optionally include one or more components such as instructions for use, devices, and additional reagents, and components, such as tubes, containers and syringes for practice of the methods. Exemplary kits can include the viruses provided herein, and can optionally include instructions for use, a device for detecting a virus in a subject, a kit for administering the virus to a subject, and a device for administering a compound to a subject.

Kits comprising polynucleotides encoding a gene of interest (typically an antigen) are also contemplated herein. In some embodiments, the kit includes at least one plasmid encoding virus packaging components and vector encoding a targeting molecule that is engineered to bind dendritic cells, preferably with specificity. In some embodiments, the kit includes at least one plasmid encoding virus packaging components, a vector encoding a targeting molecule that is engineered to bind dendritic cells and a vector encoding at least one DC maturation factor.

Kits comprising a viral vector encoding a gene of interest (typically an antigen) and optionally, a polynucleotide sequence encoding a DC maturation factor are also contemplated herein. In some embodiments, the kit includes at least one plasmid encoding virus packaging components and vector encoding a targeting molecule that is engineered to bind dendritic cells.

In one example, a kit can contain instructions. Instructions typically include a tangible expression describing the virus and, optionally, other components included in the kit, and methods for administration, including methods for determining the proper state of the subject, the proper dosage amount, and the proper administration method, for administering the virus. Instructions can also include guidance for monitoring the subject over the duration of the treatment time.

Kits provided herein also can include a device for administering a virus to a subject. Any of a variety of devices known in the art for administering medications or vaccines can be included in the kits provided herein. Exemplary devices include, but are not limited to, a hypodermic needle, an intravenous needle, a catheter, a needle-less injection device, an inhaler, and a liquid dispenser, such as an eyedropper. Typically, the device for administering a virus of the kit will be compatible with the virus of the kit; for example, a needle-less injection device such as a high pressure injection device can be included in kits with viruses not damaged by high pressure injection, but is typically not included in kits with viruses damaged by high pressure injection.

Kits provided herein also can include a device for administering a compound, such as a DC activator or stimulator, to a subject. Any of a variety of devices known in the art for administering medications to a subject can be included in the kits provided herein. Exemplary devices include a hypodermic needle, an intravenous needle, a catheter, a needle-less injection, but are not limited to, a hypodermic needle, an intravenous needle, a catheter, a needle-less injection device, an inhaler, and a liquid dispenser such as an eyedropper. Typically the device for administering the compound of the kit will be compatible with the desired method of administration of the compound.

The following examples are offered for illustrative purposes only, and are not intended to limit the scope of the present invention in any way. Indeed, various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and fall within the scope of the appended claims.

All patent and literature references cited in the present specification are hereby incorporated by reference in their entirety.

Example 1

Engineering of a DC-Specific Targeting Molecule

Lentiviral vectors can be rationally engineered to make them capable of transducing DCs in a cell-specific manner.
Certain subsets of DCs bear on their surface the DC-SIGN protein (Geijtenbeek, T. B., et al. 2000; Geijtenbeek, T. B., et al. 2000, supra.), a C-type lectin receptor capable of rapid binding and endocytosis of materials (Geijtenbeek, T. B., et al. 2004, supra.), which can be used as a targeting receptor on DCs. Sindbis virus (SV)—a member of the Alphavirus genus and the Togaviridae family—is able to infect DCs through DC-SIGN (Klimstra, W. B., et al. 2003. J. Virol. 77: 12022-12032, which is incorporated herein by reference in its entirety). However, the canonical viral receptor for the laboratory strain of SV is cell-surface heparan sulfate (HS), which is expressed by many cell types (Strauss, J. H., et al. 1994. Arch. Virol. 9: 473-484; Byrnes, A. P., and D. E. Griffin. 1998. J. Virol. 72: 7349-7356, each of which is incorporated herein by reference in its entirety). Taking advantage of the physical separation of the two receptor-binding sites on the SV envelope glycoprotein (hereafter designated as SVG), the receptor was engineered to be blind to its canonical binding target HS and to leave intact its ability to interact with DC-SIGN (FIG. 1). Once it is incorporated onto a viral surface, this mutant glycoprotein is able to mediate infection of DCs but not other cells.

An additional deletion was introduced to the E3 glycoprotein of SVG to remove amino acids 61-64. This modified SVG was designated as SVGmu (SEQ ID NO: 11). The cDNA for SVGmu was cloned downstream of the CMV promoter in the pcDNA3 vector (designated as pSVGmu, SEQ ID NO: 3).

EXAMPLE 2

Preparation of Recombinant Virus Containing the De-Specific Targeting Molecule

Preparation of the recombinant SVGmu-pseudotyped lentivirus was conducted by standard calcium phosphate-mediated transient transfection of 293T cells with the lentiviral vector FUGW (SEQ ID NO:1) or its derivatives, the packaging constructs encoding gag, pol and rev genes, and pSVGmu (Example 1). FUGW is a self-inactivating lentiviral vector carrying the human ubiquitin-C promoter to drive the expression of a GFP reporter gene (Lois, C., et al. 2002. Science 295: 868-872, which is incorporated herein by reference in its entirety). The lentiviral transfer vectors (FUGW and its derivatives) used in these studies are third generation HIV-based lentiviral vectors, in which most of the U3 region of the 3'LTR is deleted, resulting in a self-inactivating 3'LTR (SIN).

For the transient transfection of 293T cells, 293T cells cultured in 6-cm tissue culture dishes (Corning or BD Biosciences) were transfected with the appropriate lentiviral transfer vector plasmid (5 µg), along with 2.5 µg each of the envelope plasmid (SVG, SVGmu, Eco, or VSVG) and the packaging plasmids (pMDL/pRRE and pRSV-Rev). The viral supernatants were harvested 48 and 72 hours post-transfection and filtered through a 0.45-µm filter (Coming). To prepare concentrated viral vectors for in vivo study, the viral supernatants were ultracentrifuged (Optima L-80 K preparative ultracentrifuge, Beckman Coulter) at 50,000xg for 90 min. The pellets were then resuspended in an appropriate volume of cold PBS.

The resultant viruses pseudotyped with SVGmu are hereafter referred to as FUGW/SVGmu. Control viruses enveloped with the wild-type SVG glycoprotein are hereafter referred to as FUGW/ SVG.

EXAMPLE 3

Confocal Imaging of Packaged Recombinant Virus

GFP-vpr-labeled lentivectors were produced as described in Example 2, except with use of FUW lentivector (which does not contain the GFP reporter gene) and with a separate plasmid encoding GFP-vpr (2.5 µg). Fresh viral supernatant was overlaid on polylysine-coated coverslips in a 6-well culture dish and centrifuged at 3,700xg at 4°C for 2 hours using a Sorvall Legend RC1 centrifuge. The coverslips were rinsed with cold PBS twice and immunostained by anti-HA-biotin antibody (Miltenyi Biotec) and Cy5-streptavidin (Invitrogen). Fluorescent images were taken by a Zeiss LSM 510 laser scanning confocal microscope equipped with filter sets for fluorescein and Cy5. A plan-apochromat oil immersion objective (63x/1.4) was used for imaging.

FIG. 2 shows the results of the confocal imaging of the recombinant virus produced by the protocol. (The scale bar represents 2 µm.) Particles in the “GFP” slide are stained green, particles in the “SVGmu” slide are stained red, and particles in the “Merged” slide are stained green where only GFP is expressed, red where only SVGmu is expressed, and yellow/orange where GFP and SVGmu are both expressed. Over 90% of the GFP-labeled particles contained SVGmu. Thus, the production of lentiviral particles displaying SVGmu was confirmed through confocal imaging.

EXAMPLE 4

Preparation of DC-Sign Cell Lines

To facilitate the study of targeted transduction, DC-SIGN cell lines expressing human DC-SIGN (hereafter referred to as 293T.hDC-SIGN) and murine DC-SIGN (hereafter referred to as 293T.mDC-SIGN) were constructed. The 293T.hDC-SIGN and 293T.mDC-SIGN cell lines were generated by stable transfection of parental 293T cells with a VSVG-pseudotyped lentivector. The cDNAs for human DC-SIGN and murine DC-SIGN were amplified from plasmids pUNO-
hDCSIGN1Aa and pUNO-mDCSIGN (InvivoGene) and cloned downstream of the human ubiquitin-C promoter in the lentiviral plasmid FUGW to generate FUGW-hDCSIGN (SEQ ID NO: 5) and FUGW-mDCSIGN (SEQ ID NO: 6), respectively. The lentivectors were then pseudotyped with VSVG and used to transduce 293T cells. The resulting cells were subjected to antibody staining (anti-human DC-SIGN antibody from BD Biosciences and anti-murine DC-SIGN from eBioscience) and cell sorting to yield a uniform population of DC-SIGN⁺ 293T.hDCSIGN and mDCSIGN⁺ 293T.mDCSIGN cell lines.

Flow cytometry showed that DC-SIGN was expressed in virtually all of the 293T.hDCSIGN and 293T.mDCSIGN cells of the cell lines (FIG. 3A). In each diagram, the solid lines (unfilled area) represents expression of DC-SIGN in the 293T DC-SIGN cell lines, and the shaded area represents the background staining of non-transduced 293T cells.

EXAMPLE 5

Evaluation of the DC-Sign Specific Recombinant Virus by Transduction of DC-Sign Cell Lines

To assess the transduction efficiency and specificity of FUGW/SVG or FUGW/SVGmu (Example 2), the viruses were used to transduce the 293T.hDCSIGN and 293T.mDCSIGN cell lines (Example 4). Transduction efficiency was measured by GFP expression within the cell lines. Target cells (293T.hDCSIGN, 293T.mDCSIGN, or 293T cells; 0.2×10⁶ per well) were seeded in a 24-well culture dish (Corning or BD Biosciences) and spin-infected with viral supernatants (1 ml per well) at 2,500 rpm and 30°C for 90 min by using a Sorvall Legend centrifuge. Subsequently, the supernatants were replaced with fresh culture medium and incubated for 3 days at 37°C. Cells were then washed with PBS and incubated with 10% FBS in DMEM (Gibco) for another 3 days. The percentage of GFP⁺ cells was measured by flow cytometry. The transduction titer was determined by the dilution range that exhibited a linear response.

Flow cytometry showed that FUGW/SVG (containing the wild-type SVG envelope glycoprotein) had similar transduction efficiency (11–16% transduction) towards the three target cell lines (293T, 293T.hDCSIGN, and 293T.mDCSIGN) (FIG. 3B). This indicates that that SVG has broad specificity and the presence of DC-SIGN on the cell surface does not markedly alter the transduction ability of a SVG pseudotyped lentiviral vector. In contrast, the FUGW/SVGmu vector containing the mutant SVG envelope glycoprotein could specifically transduce 293T.hDCSIGN and 293T.mDCSIGN cells with a 42% and 34% transduction efficiency, respectively, but not the 293T cells (FIG. 3B). These results demonstrate that pseudotyped lentiviral vector displayingSVGmu can specifically transduce cells expressing either human or murine DC-SIGN. Furthermore, the mutant SVG gave more efficient transduction of DC-SIGN-expressing cells than of wild type SVG.

The stable integration of the FUGW lentiviral vector in the transduced cells was confirmed by PCR analysis of the genomic integration of the GFP reporter gene. To demonstrate that specific transduction was mediated by DC-SIGN, the addition of soluble anti-human DC-SIGN antibody to the FUGW/SVGmu viral supernatant before its exposure to 293T.hDCSIGN cells reduced the transduction efficiency (data not shown). The specific titer of FUGW/SVGmu for 293T.mDCSIGN was estimated to be 1×10⁵ TU (Transduction Units/ml). The titer of FUGW/SVGmu for 293T.hDCSIGN was estimated to be 1×10⁶ TU/ml.

EXAMPLE 6

Evaluation of the Recombinant Virus In Vitro

To investigate the specificity of the engineered lentivector for transduction of dendritic cells (DCs) expressing DC-SIGN, total bone marrow (BM) cells were isolated from mice and transduced directly with the FUGW/SVGmu viral vector (Example 2). A protocol to generate mouse DCs from progenitors grown in BM cultures was adapted for use in the experiment (Buchholz, C. J., et al. 1998. Nat Biotech 16:951-954, which is incorporated herein by reference in its entirety). Total bone marrow cells were harvested from B6 female mice (Charles River Breeding Laboratories), and BMDCs were generated as described elsewhere (Yang, L., and D. Baltimore. 2005. Proc Natl Acad Sci 102: 4518-4523, which is incorporated herein by reference in its entirety). Either total BM cells or BMDCs were plated in a 24-well culture dish (2×10⁶ cells per well), and spin-infected with viral supernatant (1 ml per well) at 2,500 rpm and 30°C for 90 min using a Sorvall RT17 centrifuge. After the spin, the supernatant was removed and replaced with fresh RPMI medium containing 10% FBS and GM-CSF (1:20 J558L conditioned medium). The cells were cultured for 3 days and were analyzed by flow cytometry. The BM cells isolated from mice were transduced directly with either FUGW/SVGmu viral vector or with a control vector. For the control, an ecotropic murine leukemia virus glycoprotein (Eco)-enveloped lentivector (FUGW/Eco) was used; vector enveloped with Eco can infect rodent cells with a broad specificity. Three days post-infection, the transduction efficiency was measured by flow cytometry (FIG. 4A). Approximately 9% of the cells in the mixed BM cultures were DCs (as indicated by the expression of CD11c), of which most (approximately 80%) were DC-SIGN high (data not shown). It was observed that 12% of the total BM cells were GFP positive (GFP⁺) upon FUGW/SVGmu transduction (FIG. 4A). When gated on GFP⁺ cells, it was observed that up to 95% of the transduced cells were DC-SIGN and CD11c double-positive (DC-SIGN⁺CD11c⁺), indicating that FUGW/SVGmu specifically transduces DCs expressing DC-SIGN and not other cell types in the bone marrow. In contrast, although 68% of total BM cells were GFP-positive after exposure to FUGW/Eco, only 9% of the transduced cells were DCs, within which 6.5% were DC-SIGN⁺. The stable transduction of FUGW/SVGmu was verified by Alu PCR analysis (Butler, S. L., et al. 2001. Nat Med 7: 631-634, which is incorporated herein by reference in its entirety) of the genomic integration of theLTR of the lentivector backbone. In addition, we used FUGW/SVGmu to transduce primary T and B cells harvested from mouse spleen and virtually no transduction was detected (FIG. 4B), indicating remarkable transduction specificity.

The efficiency of the lentivector bearing SVGmu to transduce in vitro cultured, bone marrow (BM)-derived DCs (BMDCs) was also tested. Bone marrow (BM)-derived DCs (BMDCs) were generated as described above by culturing in the presence of granulocyte-macrophage colony-stimulating factor (GM-CSF) for 6 days. The cells were then exposed to either the FUGW/SVGmu or FUGW/Eco lentivector. Flow cytometry of the BMDCs on day 3 post-transduction showed that FUGW/Eco transduced both CD11c⁺ DCs (39%) and CD11c⁺ cells (7.6%) (FIG. 5), which is consistent with the wide tropism of Eco. On the contrary, FUGW/SVGmu only
transduced CD11c+ DCs (32.7%), and no GFP+ cells were detected among the CD11c+ cells (FIG. 5), indicating that FUGW/SVGMu can specifically modify BMDCs.

These results thus collectively demonstrate that the engineered recombinant lentivectors bearing SVGMu can specifically transduce DCs in vitro and that the targeted transduction is correlated with the expression of DC-SIGN on the surface of DCs.

EXAMPLE 7
Effect Of Recombinant Virus on Activation of Dendritic Cells In Vitro

The recombinant lentivirus was further examined to determine whether it could specifically target, transduce and activate DCs into mature DCs. The surface up-regulation of the co-stimulatory molecule B7.2 (CD86) and the MHC class II molecule I-Aβ, which are considered to be signatures of DC activation (Steinman, R. M., et al. 2003. *Annu. Rev. Immunol.*, 21: 685-711, which is incorporated herein by reference in its entirety), was measured in DCs exposed to recombinant virus. BMDCs were generated and infected with FUGW/SVGMu as described in Example 6. LPS at a concentration of 1 μg/ml was also added overnight for further activation of transduced BMDCs.

Flow cytometry of BMDCs 3 days post-transduction showed that treatment with FUGW/SVGMu elevated the expression of DC activation markers, CD86 and I-Aβ, on GFP positive DCs, as compared to GFP negative DCs (FIG. 6, top panel). The shaded area indicates GFP negative (untransduced) cells, and the solid line (unfilled area) indicates GFP positive (transduced) cells. It was observed that the targeted transduction of BMDCs synergized with lipopolysaccharide (LPS) treatment to further mature DCs (FIG. 6, bottom panel). This indicates that the targeted transduction can either work alone in combination with other DC maturation factors to induce DC activation.

EXAMPLE 8
Targeting of Dendritic Cells In Vivo by Recombinant Virus

The proof of whether this methodology can be used for vaccination can be examined by in vivo experimentation. To test whether engineered lentivectors bearing SVGMu could target DCs in vivo, the recombinant and concentrated lentivector FUGW/SVGMu (10 x 10^6 TU resuspended in 200 μl PBS) was injected subcutaneously into the left flank of the C57BL/6 female mice (B6, Charles River Breeding Laboratories) close to an inguinal lymph node (within 1 cm range). The left inguinal lymph node and the equivalent lymph node at the opposite site were isolated for size examination on day 3 post-injection. The cells were harvested from these nodes and their total numbers were counted. The percentage of GFP+ DCs was analyzed by flow cytometry on cells stained with anti-CD11c antibody (BD Biosciences).

On day 3, a significant enlargement of the left inguinal lymph node close to the injection site was observed (FIG. 7A, left image), and the cell number in this lymph node increased more than 10-fold, compared with the equivalent lymph node at the opposite side or lymph nodes from a naive mouse (FIG. 7B). This indicates that vector administration can enhance trafficking and proliferation of lymphocytes in a nearby lymph node.

Flow cytometry indicated that approximately 3.8% of the total CD11c+ cells in the left inguinal lymph node were GFP+ DCs (FIG. 7C), which appear to have migrated from the injection site. This is considered a remarkably large effect from one subcutaneous injection of vector and demonstrates that the recombinant virus is effectively infecting DCs in vivo.

EXAMPLE 9
Evaluation of the Specificity of Recombinant Virus by In Vivo Transduction

To examine the in vivo specificity of the DC-targeted lentivector, a lentiviral vector encoding a firefly luciferase was constructed. The cDNA of firefly luciferase was amplified from pGL4.2 LucP (Promega) and cloned into FUGW (Lois, C. et al. 2002. supra.) to replace GFP, yielding the construct Fluc (SEQ ID NO: 4) (FIG. 22A). The luciferase reporter gene was then used to visualize the in vivo transduction of the tissue cells using standard protocols of bioluminescence imaging (BLI).

The recombinant lentivector (hereafter referred to as Fluc/SVGMu) was injected subcutaneously at the left flank of the mouse. In another mouse, a lentivector pseudotyped with vesicular stomatitis viral glycoprotein (hereafter referred to as Fluc/BSVG) was injected as a non-specific vector control. Vector-treated mice were then imaged non-invasively using BLI. Fluc/SVGMu-treated mice had a high and permanent signal at the injection site, indicating that non-specific tissues were transduced to express luciferase (FIG. 22B). This is consistent with the fact that SVSVG-enveloped virus has broad specificity. In contrast, no significant signal was detected at the injection site of Fluc/SVGMu-treated mice (FIG. 22B), indicating that the lentivector bearing SVGMu had a relatively stringent target specificity. At no time was luminescence signal able to be detected in the targeted mice, likely due to the rare and sparse distribution of the DCs, which is beyond the sensitivity of the current BLI method.

After one month, the mice injected with Fluc/SVGMu were subjected to biodistribution analysis by quantitative RT-PCR and no detectable copy of the lentivector was observed in all isolated organs (heart, liver, spleen, kidney, gonad, lung, skin, lymph node), verifying the lack of non-specific infection in the animals and thus the specificity of the targeted vector for DCs.

EXAMPLE 10
In Vitro Antigen Delivery by Recombinant Virus

To determine whether the targeted transduction of DCs by a recombinant lentivector could be used to effectively deliver antigen genes to DCs for stimulation of antigen-specific CD8+ and CD4+ T cell responses, a lentivector expressing the model antigen, chicken ovalbumin (OVA), was constructed. In C57BL/6J (B6) mice, OVA is a well-characterized target antigen for the CD8+ T-cell receptor OT1, which specifically binds OVA257-269 (designated as OVAp) and for the CD4+ T-cell receptor OT2, which specifically binds OVA323-339 (designated as OVAp*) (Yang, L. and D. Baltimore. 2005. *Proc. Natl. Acad. Sci. USA* 102: 4518-4523, which is incorporated by reference in its entirety). The lentivector expressing OVA (FOVA (SEQ ID NO:2), FIG. 8, top) was constructed from FUGW (FIG. 8, bottom) by replacing the GFP with the cDNA of chicken ovalbumin.
The BMDCs (Example 6) were transduced on day 6 of culture with either recombinant lentivirus FOAVA/SVGmnu or control recombinant lentivirus FUGW/SVgmu (encoding a non-relevant reporter gene GFP). The day 6 BMDCs were spin-infected with viral supernatant, and cultured for an additional 3 days. On day 9, the non-adherent cells were collected and re-cultured in RPMI medium containing 10% FBS, GM-CSF (1:20 1558L, conditional medium), and 1 μg/ml LPS (Sigma). On day 10, the cells were collected and used for T cell stimulation. The modified BMDCs were designated as DC/FOAVA and DC/FUGW, depending on the lentivirus used for transduction. In parallel, non-adherent cells were collected from non-transduced day 9 BMDC culture, and were re-cultured in the same medium (RPMI containing 10% FBS, GM-CSF, and LPS). On day 10, the cells were collected and loaded with either OVAp (OVAp255-260, specifically bound by OTI T cell receptors, hereafter referred to as DC/OVAp) or OVAp* (OVAp255-260, specifically bound by OT2 T cell receptors, hereafter referred to as DC/OVAp*), and used as positive controls for T cell stimulation. To examine the ability of vector-transduced BMDCs to process and present the transgenic OVA antigen, spleen cells were collected from the OT1 and OT2 transgenic mice and cultured with the lentivirus-transduced BMDCs, or BMDCs loaded with either OVAp or OVAp*, at the indicated ratio. Three days later, the supernatant was collected and assayed for IFN-γ production using ELISA and the cells were collected and analyzed for their surface activation markers using flow cytometry. T cell proliferation was assayed using [3H] thymidine incorporation.

After a three-day coculture with varying ratios of DC/FOAVA to transgenic T cells, OTI T cells responded vigorously as measured by the release of IFN-γ (FIG. 10A) and T cell proliferation (FIG. 10B). As expected, no new OVA response was detected using DC/FUGW (FIGS. 10A and 10B). It was also observed that the transgenic expression of OVA was even more efficient than peptide-loading for stimulation of an OTI T cell response, which is consistent with the notion that MHC class I favors the presentation of endogenously produced peptides. Flow cytometry showed that the activated OTI T cells exhibited typical effector cytotoxic T cell phenotype (CD25*CD69*CD62L*CD44*CD45RA*), after stimulation by either DC/FOAVA or DC/OVAp (FIG. 9).

When the DCs were co-cultured with OT2 CD4+ T cells, T cell activation was also observed, as indicated by changes in the surface markers (FIG. 11) and the production of IFN-γ (FIG. 12). However, stimulation of CD4+ cells was not as pronounced as that of CD8+ cells, presumably due to the less efficient presentation of endogenous antigen peptides to the MHC class II molecules. By modifying the cellular localization of OVA antigen to direct it to MHC class II presentation pathway, an enhancement of CD4 stimulation was achieved that was even better than that of peptide-pulsed DCs (data not shown).

These results show that the method of DC targeting through lentivector infection can effectively deliver antigens to DCs and stimulate both CD8+ and CD4+ T cell responses.

EXAMPLE 11

In Vivo Antigen Delivery by Recombinant Virus

To determine if DCs targeted with lentivectors could activate antigen-specific T cells in vivo, a method of T-cell receptor (TCR) gene transfer into murine hematopoietic stem cells (HSCs) was used to generate antigen-specific and TCR-engineered T cells in mice, as described elsewhere (Yang, L. and D. Baltimore, D. 2005. supra.). A tricistronic retroviral vector MIG-OT1 co-expressing OTI TCRα and TCRβ, along with the GFP marker (FIG. 13A) was constructed.

Briefly, B6 female mice (Charles River Breeding Laboratories) were treated with 250 μg of 5-fluorouracil (Sigma). Five days later, bone marrow (BM) cells enriched with HSCs were harvested from the tibia and femur and cultured in a 24-well culture plate (2x105 cells per well) in BM culture medium (RPMI containing 10% FBS, 20 ng/ml IL-3, 50 ng/ml IL-6 and 50 ng/ml rmSCF (PeproTech)). On day 1 and day 2 of the culture, the cells were spin-infected with the MIG-OT1 retroviral vector pseudotyped with Eco (2 ml viral supernatant per well) at 2,500 rpm and 30° C. for 90 min. After each spin, the supernatant was removed and replaced with fresh BM culture medium. On day 3, the transduced BM cells were collected and transferred into B6 recipient mice receiving 1,200 rads of total body irradiation. Eight weeks post-transfer, the mice were used for the in vivo immunization study. Each mouse received one dose of subcutaneous injection of 10x106 TU of targeting lentivirus. Seven days later, spleen and lymph node cells were harvested and analyzed for the presence of OT1 T cells and their surface activation markers using flow cytometry. Eight weeks post-transfer, analysis of the peripheral T cells of the reconstituted mice showed that approximately 5% of the CD8+ T cells were GFP*OT1* (FIG. 13B). Some of the reconstituted mice were immunized via subcutaneous injection of the same dose (10x106 TU) of either FOAVA/SVGmnu (Example 10) or FUGW/SVGmnu (Example 2). Analysis of GFP*OT1* T cells harvested from peripheral lymphoid organs 7 days later showed that the targeted DC immunization by FOAVA/SVGmnu doubled the number of OT1 T cells as compared to the control mice, which were either not immunized or immunized with FUGW/SVGmnu (FIG. 14B). The GFP*OT1* T cells derived from FOAVA/SVGmnu-immunized mice exhibited an effector memory phenotype (CD69CD62L*CD44*), indicating these cells have gone through a productive immune response (FIG. 14A).

EXAMPLE 12

Induction of In Vivo CTL and Antibody Responses by Direct Administration of Recombinant Virus

Studies were conducted on the efficacy of the in vivo DC targeting for inducing an antigen-specific CD8+ cytotoxic T lymphocyte (CTL) response and antibody response through the administration of the lentivector to naïve, wild-type mice.

Wild-type B6 mice (Charles River Breeding Laboratories) were given a single injection of targeting lentivector (5x106 TU of FUGW/SVG or FOAVA/SVGmnu) subcutaneously on the right flank at the indicated dose. On day 7 and day 14 post-immunization, blood was collected from the immunized mice through tail bleeding, and the serum anti-OVA IgG was measured using ELISA. On day 14, spleen and lymph node cells were harvested and analyzed for the presence of OVA-specific T cells and their surface activation markers using flow cytometry.

The presence of OVA-specific T cells was measured by measuring cytokine secretion and tetramer staining. At day 14 post-injection, T cells harvested from peripheral lymphoid organs were analyzed. Lentivector targeting to native DCs was able to elicit OVA-responsive CD8+ T cells in both the
lymph node (data not shown) and spleen (FIG. 23). Administration of a single dose of recombinant FOVA/SVGMu was sufficient to generate CD8+ T cells, which could be primed to secrete IFN-γ upon OVAp restimulation (FIG. 23). Administration of the control vector FUGW/SVGMu failed to generate any OVAp-specific responses (FIG. 23). To further evaluate the magnitude of responses, the OVAp-specific CD8+ T cells was measured by MHC class I tetramer staining. A high frequency of OVAp-specific T cells (≥6%) was obtained following a single dose injection (FIG. 15); no tetramer-positive cells were detected in the mice treated with FUGW/SVGMu (FIG. 15). The data generated by tetramer quantitation correlated well with the analysis of CD8+ effector cells assayed by intracellular IFN-γ staining (FIG. 23). Phenotype analysis of these OVAp-positive T cells showed that these cells displayed the surface characteristics of effector memory T cells (CD28-CD69-CD62L-CD44-CD122+CD45R-CD103+). (FIG. 17A).

To investigate the dose response of lentivector administration, doses of FOVA/SVGMu ranging from 100×10^6 TU to 3×10^7 TU were injected subcutaneously and OVAp-specific T cells in the spleen were measured at day 14 post-injection. An exceptionally high frequency (12%) of OVAp-specific CD8+ T cells was detected at the dose of 100×10^6 TU (FIG. 16A). The percentage of OVAp-specific cells correlated proportionately with the amount of recombinant vector administered (FIG. 16B). A plateau in the dose response was not achieved with the doses that were tested, indicating that further enhancement can be achieved by increasing the amount of vector injected and/or the frequency of injection.

Further, the serum IgG levels specific for OVA in mice were examined on the 7th and 14th days after immunization with FOVA/SVGMu (50×10^6 TU). The IgG serum titer was 1:10,000 on day 7 and 1:30,000 on day 14 (FIG. 17B). This is a rather impressive antibody response for a single dose injection without additional adjuvant or other stimuli, indicating that targeted lentivector immunization can also elicit significant B cell secretion of antigen-specific antibodies.

These results show that in vivo administration of a DC-targeting lentivector can induce both cellular and humoral immune responses against the delivered antigen.

EXAMPLE 13
Generation of Anti-Tumor Immunity
Preventive Protection

The anti-tumor immunity generated after an in vivo administration of DC-targeted lentivirus was evaluated. An E.G7 tumor model (Wang, L. and D. Baltimore, 2006. supra.) was used in which OVA serves as the tumor antigen.

The tumor cells lines EL4 (C57BL/6J, H-2b, thy1.1) and E.G7 (EL4.E14) cells stably expressing one copy of chicken OVA cDNA were used for the tumor challenge of mice. For the tumor protection experiment, B6 mice (Charles River Breeding Laboratories) received a single injection of 50×10^6 TU of the targeting lentivirus (FOVA/SVGMu or FUGW/SVGMu) on the right flank. Two weeks later, 5×10^6 EL4 or E.G7 cells were injected subcutaneously into the left flank of the mice. Tumor size was measured every other day using fine calipers and was shown as the product of the two largest perpendicular diameters axb (mm^2). The mice were killed when the tumors reached 400 mm^2.

Vaccination with 50×10^6 TU FOVA/SVGMu completely protected the mice from the E.G7 tumor challenge (FIG. 18, left), while tumors grew rapidly in mice receiving a mock vaccination with a lentivector lacking the OVA transgene (FIG. 18, right). This protection was OVA-specific because the vaccinated mice grew control EL4 tumors that lack expression of OVA (FIG. 18, right), regardless of the lentivirus used for immunization.

EXAMPLE 14
Generation of Anti-Tumor Immunity
Tumor Treatment

The anti-tumor immunity generated after an in vivo administration of DC-targeted lentivirus was evaluated where tumor cells were introduced prior to administration of the lentivector. The steps of tumor injection and lentivector administration were reversed relative to that in Example 13 to test whether an established tumor could be eliminated, in a test of "therapeutic vaccination". To this end, E.G7 tumor cells expressing the firefly luciferase gene (E.G7.luc) were used to challenge mice, allowing close monitoring of tumor growth kinetics in live animals using BLI. To facilitate imaging, an albino strain of B6 mice (The Jackson Laboratory) was used. These mice lack pigmentation and therefore have low background absorption of the luminescence signal. Injection of these mice with 100×10^6 TU of FOVA/SVGMu (Example 10) showed a similar response to that observed in canonical B6 mice (FIG. 21). E.G7.luc tumor cells (5×10^5) were implanted subcutaneously in the albino B6 mice. The mice were immunized by FOVA/SVGMu (50×10^6 TU per mice per time) twice on days 3 and 10 post-tumor challenge via subcutaneous injection. The experiment was repeated three times with a representative experiment shown in FIGS. 19 and 20.

The mice receiving the DC-targeting lentivector immunization showed a decline of tumor growth starting at day 9, followed by tumor regression and a reduction of luminescence below the detection level on day 11 (FIGS. 19 and 20). Although minimal tumor recurrence was observed from day 12 to day 16, mice treated with FOVA/SVGMu were free of disease at the end of day 18 and thereafter; no tumor relapse was observed for as long as the experiment ran (~60 days). In contrast, tumors grew progressively in the mice receiving no treatment and the mice had to be removed from the experiment after day 16 due to the large size of the tumors. It was interesting to note that tumor regression was observed starting at 7 days after the lentivector immunization. The timing of tumor regression correlates well with the kinetics of an antigen-specific immune response induced by vaccination.

EXAMPLE 15
In Vitro Delivery of Antigen and Maturation Factors by a Recombinant Virus

The success of DC vaccination can depend on the maturation state of DCs (Banchereau, J. and A. K. Prolla, 2005. Nat Rev Immunol 5:296-306; Schuler, G., et al. 2003. Curr Opin Immunol 15: 138-147; Figdor, C. G., et al. 2004. Nat Med 10: 475-480, each of which is incorporated herein by reference in its entirety). Therefore, genes can be included in the lentiviral vectors that encode the stimulatory molecules to trigger the desired DC-maturation. Cytokines that can be used include, but are not limited to, GM-CSF, IL-4, TNFα, IL-6, and the like. In some embodiments, the maturation agent that is used is the CD40 ligand (CD40L), which is typically expressed on CD4 T cells and serves as a ligand for the CD40 receptor on DCs (Matano, T., et al. 1995. J Gen Virol 76:...
3165-3169; Nguyen, T. H., et al. 1998. *Hum Gene Ther* 9: 2469-2479, each of which is incorporated herein by reference in its entirety. To further manipulate DCs to be a potent vaccine delivery device, a drug-inducible CD40 receptor (iCD40) is adapted into the gene delivery system in some embodiments. As described elsewhere, iCD40 was designed and consists of a cytoplasmic domain of CD40 fused to ligand-binding domains and a membrane-targeting sequence (Hanks, B. A., et al. 2005. *Nat Med* 11: 130-137, which is herein incorporated by reference in its entirety). When iCD40 is expressed, maturation and activation of DCs is regulated with a lipid-permeable, dimerizing drug.

To examine the effect of including DC maturation factors, the cDNAs for ovalbumin (OVA, as described in Example 10), GM-CSF, IL-4, TNFα, IL-6 and CD40L are obtained. The iCD40 is constructed as described elsewhere (Hanks, B. A., et al. 2005. *supra*). Using IRES and 2A-like sequences, multiestrionic lentiviral vectors capable of efficiently transducing up to four proteins are constructed. This system is adapted to construct lentiviral vectors co-expressing the following genes: OVA and a maturation factor molecule (GM-CSF, IL-4, TNFα, IL-6, CD40L or iCD40) (FIG. 24a, labeled as “FUOIM*”). An exemplary vector sequence is provided by SEQ ID NO: 7. SVGmu-enveloped lentiviruses are prepared as described in Example 2, and the lentinus are transduced in vitro into cultured mouse BMDCs (generated as described in Example 6) to specifically deliver these genes into the cells. Maturation of BMDCs is measured by FACS analysis for up-regulation of several key molecules that have essential roles in the process of T cell stimulation. Typical representative markers are CD40L, CD86, CD80, MHC class I, MHC class II and endogenous CD40. BMDCs transduced with lentinus encoding only OVA and GFP serve as controls for the experiment. It is observed that up-regulation of maturation markers is achieved when iCD40-modified DCs are exposed to an effective amount of dimeric drug AP20187.

In addition, two characteristic features of matured DCs are the reduced capacity for endocytosis and the improved potential for T cell activation. The uptake of FITC-tagged dextran is used to quantify the endocytosis of transduced DCs. The mature DCs are also used to stimulate T cells expressing OT1 T cell receptors (TCRs) (as described in Example 10), in order to evaluate their capacity to mount an immune response. It is observed that when iCD40-modified DCs are exposed to an effective amount of dimeric drug AP20187, the uptake of FITC-tagged dextran is reduced relative to that of non-iCD40-modified DCs. Furthermore, it is observed that after coculture with varying ratios of iCD40-modified DCs (treated with the dimeric drug) to transgenic T cells, OT1 T cells respond more vigorously as measured by the release of IFN-γ and T cell proliferation than do those co-cultured with non-iCD40-modified DCs.

Longevity of DCs is another parameter that determines T-cell-dependent immunity. The effects of stimulator molecules on DC survival using an in vitro serum-starvation assay will be compared using the method as described in Hanks et al. (Hanks, B. A., et al. 2005. *supra*). If necessary, two maturation factor molecules can be delivered by lentiviral vector to targeted DCs, as the vector configuration has the capacity to express four proteins.

EXAMPLE 16

In Vivo Delivery of Antigen and Maturation Factors by a Recombinant Virus

Recombinant viruses packaged with FUOIM lentiviral vector (SEQ ID NO: 7) are prepared as described in Example 15. The viruses are administered to naïve B6 mice to deliver OVA antigen and maturation factor molecules to DCs, and induction of immunity to graded doses of viruses is evaluated as described in Example 11. It is observed that the targeted DC immunization by iCD40-containing lentiviruses increases the number of OVA responsive T cells as compared to the control mice, which are either not immunized, immunized with a non-OVA containing lentivirus (e.g., FUGW/SVGMu), or immunized with non-iCD40 containing lentivirus (e.g., FOVA/SVGMu).

In addition, the resistance of the animals to a tumor challenge is assessed with the iCD40-containing lentivectors, as described in Example 13. The mice are injected with the following lentivectors in the tumor challenge experiment: FUOIM/SVGMu, FOVA/SVGMu, or FUGW/SVGMu. The following cell lines are used for tumor challenge: EL4 (C57BL/6j, H-2b), thymoma) and E.G7 ((EL4 cells stably expressing one copy of chicken OVA cDNA). It is observed that the mice receiving immunization by the DC-targeting lentivectors FUOIM/SVGMu and FOVA/SVGMu are protected from the tumor challenge. In contrast, it is observed that tumors grow rapidly in mice receiving a mock vaccination with a lentivector lacking the OVA transgene (FUGW/SVGMu). This protection is OVA-specific because the vaccinated mice grow control EL4 tumors that lack expression of OVA, regardless of the lentivector used for immunization.

Finally, the potential of this method to eradicate an established tumor is assessed with the iCD40-containing lentivectors, as described in Example 14. The following lentivectors are used for immunization in the experiment: FUOIM/ SVGMu and FOVA/SVGMu. The following cell lines are used for tumor treatment: EL4 and E.G7. It is observed that the tumor cell-injected mice receiving immunization by the DC-targeting lentivectors (FUOIM/SVGMu and FOVA/ SVGMu) show a decline of tumor growth, followed by tumor regression and a reduction of luminescence below the detection level. Further, no tumor relapse is observed for as long as the experiment runs (~60 days). In contrast, tumors grow progressively in the mice receiving no treatment.

EXAMPLE 17

HIV/AIDS Antigen Presentation by Recombinant Virus In Vitro

To treat HIV/AIDS, “dual-functional” DCs are generated based on the described gene delivery strategy. The “dual functional” DCs are efficacious at both eliciting neutralizing antibodies (Nabs) and inducing T cell immunity (FIG. 25). To efficiently elicit Nabs, a gene encoding chimeric membrane-bound gp120 (gp120m) is delivered to DCs. Gp120 is an envelope glycoprotein for HIV and is considered to be the most potent immunogen (Klimstra, W. B., et al. 2003. *J Virol* 77:12022-12032; Bernard, K. A., et al. 2000. *Virology* 276: 93-103; Byrnes, A. P., et al. 1998. *J Virol* 72: 7349-7356, each of which is incorporated herein by reference in its entirety). As described elsewhere, gp120 fused with the transmembrane domain of the vesicular stomatitis virus glycoprotein can be expressed on the cell surface in a trimeric form, mimicking the mature trimer on the HIV virion surface (Klimstra, W. B., et al. 1998. *J Virol* 72: 7357-7366, which is incorporated herein by reference in its entirety). This form of immunogen will be displayed on the DC’s surface. In addition to surface expression, the DCs can also present epitope peptides derived from gp120 in MHC restricted fashion to T cells.

Since HIV infection can significantly impair DC function through the depletion of CD4 T cells, it is desirable to engi-
neer DCs that function independently of T cells. Expression of CD40L or iCD40 can result in maturation and activation of DCs in the absence of CD4 T cells. Thus, the engineered CD40L or iCD40, as described in Example 16, which functions as a maturation and stimulatory molecule, is incorporated into the DC-targeting virus.

The lentiviral construct for genetically modifying DCs is illustrated in FIG. 24b and is labeled as FUGmID (SEQ ID NO: 8). Codon-optimized cDNA for gp120 from NIH AIDS Research & Reference Reagent Program are obtained. The codon-optimized sequence can achieve exceptionally high levels of gene expression outside of the context of the HIV-1 genome. The construct is prepared by fusion of gp120 with the transmembrane domain of the vesicular stomatitis virus glycoprotein.

In vitro assays are conducted to assess the efficacy of gene-modified DCs to elicit NAbs. CD19+ B cells are isolated from the spleens of naive B6 mice using anti-CD19 microbeads (MilHeny Biotech, Auburn, Calif.) and co-cultured with modified DCs in the presence of IL-4 and IL-6. The lentiviral vector FUmGID is co-transfected with SVGmu in cell lines to prepare the FUmGID/SVGmu virus, as described in Example 2. The resultant viruses are transduced into bone marrow-derived DCs (BMDCs). The transduced DCs are be irradiated (3,000 rad) and used as antigen presenting cells (APCs) in co-culture with B cells. The time course of the proliferation of B cells in response to transduced BMDCs is measured. It is observed that B cells proliferate to a greater extent in co-culture with transduced BMDCs than those that are co-cultured with mock-transduced BMDCs.

To investigate the effect of genetically modified DCs on the differentiation of B cells into specific immunoglobulin-secreting cells, the co-culture method as previously described is employed with the exception that the DCs are not irradiated. After 14 days, the titer of various isotopes of HIV-specific antibody in culture supernatants is determined by ELISA using recombinant gp120 (available from NIH AIDS Research & Reference Reagent Program) as the antigen. Expression of the various isotopes of HIV-specific antibody are greater in B-cells co-cultured with transduced BMDCs than in those cocultured with mock-transduced BMDCs.

To assess the efficacy of the genetically modified DCs to activate T cells in vitro, CD3+ T cells are isolated from naive B6 mice and co-cultured with lentivirus-infected and irradiated DCs. The time course of T cell proliferation is measured. T cell proliferation is found to be greater in T cell cultures co-cultured with transduced and irradiated DCs than in those co-cultured with mock-transduced DCs.

The results are expected to collectively demonstrate that BMDCs transduced with the FUmGID/SVGmu lentivirus construct is effective in both stimulation of B-cells to produce neutralizing antibodies (NAbs) and in inducing T cell immunity against HIV/AIDS.

EXAMPLE 18

HIV/AIDS Antigen Presentation by Recombinant Virus In Vivo

To evaluate the activation of B cells in vivo, B6 mice are immunized by subcutaneous injection with the recombinant lentiviruses prepared as described in Example 17. Controls include mice injected with lentiviruses encoding antigens alone, lentiviruses encoding maturation molecules alone, and naive mice without any treatment. Two weeks after virus injection, serum antibodies against HIV are measured by ELISA. The antibody titer is found to be higher in those mice injected with the FUmGID/SVGmu virus as well as in those injected with lentivirus encoding antigens alone. In contrast; The antibody titer is relatively low in those mice immunized with lentivirus encoding maturation molecules alone and in naive mice.

For in vitro activation of T cells, the recombinant viruses described are injected into B6 mice. Seven days later, T cells are isolated, and their proliferation and cytokine secretion, after in vitro restimulation with genetically modified DCs, is measured as described in Example 12. The durability of the effector T cell responses is also monitored. Lentivector targeting to naive DCs is able to elicit HIV-responsive T cells in both the lymph node and spleen. Administration of recombinant FUmGID/SVGmu is sufficient to generate T cells which secrete IFN-γ. In contrast, administration of a mock control vector (e.g. FUGW/SVGmu) fails to elicit an HIV-specific response.

EXAMPLE 19

In Situ HIV/AIDS Vaccination by Recombinant Virus: Protection Against HIV Challenge

In order to test in situ DC vaccination approach to deal with HIV, a new mouse model of HIV pathogenesis involving human/mouse chimeras is developed. As described elsewhere, the RAG2^{−/−}γ_{−/−} mouse can be reconstituted with a human adaptive immune system (Strauss, J. H., et al. 1994. Archives of Virology 9:473-484, which is incorporated herein by reference in its entirety). The RAG2^{−/−}γ_{−/−} mice lack B, T, and NK cells (Morizono, K., et al. 2001. J Virol 75: 8016-8020, which is incorporated herein by reference in its entirety). Injection of CD34⁺ human cord blood into the liver of one-day-old partially-irradiated mice leads to the generation and maturation of functionally diverse human DCs, B cells, and T cells with human MHC restriction. Additionally, this model directs the development of primary and secondary lymphoid organs, and the production of a functional CD8⁺ T cell immune response against a viral challenge. Furthermore, the observation of the IgG isotype switching from IgM to IgG indicates the existence of functional CD4⁺ T cell immunity.

To determine the effectiveness of preventive protection against HIV by DC-targeted immunization, the human/mouse chimeras are administered recombinant viruses enveloped with SVGmu by injection. The recombinant viruses encode gp120m antigen (Example 17) in conjunction with a maturation stimulator (for example, CD40L or iCD40 as in Example 15), and they are prepared and concentrated as described in Example 2. The immunized mice are then inoculated with HIV according to methods well known in the art, such as, for example, via intraperitoneal or intravenous routes. Since the reconstituted mice maintain human CD4⁺ T cells, the animals are challenged with molecularly cloned HIV reporter viruses, NFN55-r-HSAS (CCR5-tropic), NL-r-HSAS (CXCR4-tropic) and clinical isolates (Baenziger, et al. 2006. Proc Natl Acad Sci USA 103:15951-15956, which is incorporated herein by reference in its entirety). The replication-competent reporter viruses also contain the heat-stable antigen (HSA) in the vpr region. Further, to establish a productive infection prior to inoculation, infected syngeneic peripheral blood mononuclear cells (PBMCs) are injected into the peritoneal space of the reconstituted human/mouse chimera.

Evidence of HIV infection is monitored over time in spleens, lymph nodes, PBMCs, and peripheral blood. FACS for HSA in the HIV reporter viruses is used to test for HIV viral integration and replication. HIV viral load is also mea-
53

sured from plasma using RT-PCR. Through evaluation of HIV infection by these methods, it is observed that productive
in situ DC vaccination makes the immunized mice more resistant to the HIV challenge than those which are not immu-

EXAMPLE 20

In Situ HIV/AIDS Vaccination by Recombinant Virus: Clearance of HIV Infection

To test the ability of the in situ DC vaccination approach to clear an active HIV infection, human/mouse chimeras are
first challenged with molecularly cloned HIV reporter virus, NFNSX-r-HSAS (CCR5-tropic), as described in Example
19. Active HIV infection is monitored by FACS analysis of HSA expression in human CD4 T cells. Once successful HIV
infection is confirmed, the engineered recombinant viruses (Example 19) are injected into animals via subcutaneous
injection or by an optimal route determined by one of skill in the art (for example, i.e., i.d., i.v. or i.p.). The HIV viral load
is then monitored by RT-PCR, and peripheral CD4 counts are followed. It is observed that DC vaccination is able to lower
HIV viral load and to clear an established HIV infection in immunized mice compared to non-vaccinated controls.

Highly active antiretroviral therapy (HAART), utilizing a three-drug strategy, has significantly improved AIDS morbid-
ity and mortality. The strategy outlined above can be adapted to this paradigm by simultaneously transducing DC cells in
vivo with engineered recombinant viruses. In conjunction with HAART, the above studies are repeated to evaluate the
ability to prevent or reduce infection after HIV challenge (Example 19) and to clear an active HIV infection.

EXAMPLE 21

Treatment of a Malignant Tumor in a Human Using a Recombinant Virus

A human patient is diagnosed with a malignant tumor. The patient is administered a suitable amount of recombinant
virus containing a gene that encodes an antigen specific for the tumor and enveloped with a DC-SIGN specific targeting
molecule, such as, for example, SVGmu. The virus optionally contains a gene encoding a DC maturation factor, as described in Example 15. The virus is administered by weekly intravenous injection for the duration of treatment. At periodic times during and after the treatment regimen, tumor burden is assessed by magnetic resonance imaging (MRI). Significant reductions in tumor size are found as treatment progresses.

EXAMPLE 22

Prevention of Tumor Formation in a Human Using a Recombinant Virus

A group of human patients is administered a suitable amount of recombinant virus containing at least one gene

encoding an antigen that is commonly and specifically associated with tumor cells and optionally containing a gene
encoding a DC maturation factor, as described in Example 15. The virus is enveloped with a DC-SIGN specific targeting
molecule, such as, for example, SVGmu (Example 2). Patients in the experimental group and in a control group are
monitored periodically for tumor growth. It is observed that the incidence of malignant tumor formation is lower in
patients to whom the virus is administered than in the control group.

EXAMPLE 23

Treatment of AIDS/HIV in a Human Using a Recombinant Virus

A human patient is diagnosed with HIV/AIDS. The patient is administered a suitable amount of recombinant virus con-
taining a gene that encodes Gp120 (Example 17) and enveloped with a DC-SIGN specific targeting molecule, such as,
for example, SVGmu (Example 2). The virus optionally contains a gene encoding a DC maturation factor, as described in Example 15. The virus is administered by weekly intravenous injection for the duration of treatment. At periodic times during and after the treatment regimen, HIV viral load is assessed by measuring antibodies in the patient’s blood against HIV using ELISA. The patient’s T-cell count is also evaluated. It is observed that a significant reduction in HIV viral load is achieved as treatment progresses. Furthermore, it is observed that the patient’s T-cell count stops decreasing as treatment progresses.

EXAMPLE 24

Prevention of HIV/AIDS in a Human Using a Recombinant Virus

A group of human patients considered at risk for HIV infection is administered a suitable amount of recombinant
virus containing a gene encoding GP120 (Example 17) and optionally containing a gene encoding a DC maturation fac-
tor, as described in Example 15. The virus is enveloped with a DC-SIGN specific targeting molecule, such as, for example,
SVGmu (Example 2). Patients in the experimental group and in a control group are tested every 6 months for HIV infection
and if positive, monitored for HIV viral load and T-cell counts. In positively infected patients within the vaccinated
group, it is observed that HIV viral load stays low and T-cell counts remain high relative to the positively-infected patients
of the control group.

Although the foregoing invention has been described in detail for purposes of clarity of understanding, it will be
obvious that certain modifications may be practiced within the scope of the appended claims. All publications and patent
documents cited herein are hereby incorporated by reference in their entirety for all purposes to the same extent as if each
were so individually denoted.
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<223> OTHER INFORMATION: Constructed plasmid vector

<400> SEQUENCE: 1

gtgcggcagc ccggagatct ccccgatccct tattgtgac cctctagtca atctggctctg 60
atgcggcata gtaaagcag taatgcctgc ctctggctgt gtggagaggt gttggagtgt 120
gcgcagcaca atttaaatgg acaaaaggg acggcctgaga cagaagatgctt aatgaagatc 180
tggttagggt tagggatttt ctggtgcttc gccgagaatt ggccgaggtg aegcgtgac 240
atggtagact gactatgttt tataagatgta caattcaggg gcattaggtt catagcccct 300
aattggagtt cccggtttca taacctccgg taataagccg gctggtgtga cgggcaagc 360
aoccccgcgcc attaactgta ataactaagct atgttcccaat agtaagccca ataggcc 420
tcaatctagc tcaataagggt ggtgatttac ggtttaactc gcacccctgga ctctaccaag 480
tgtaataaat ggccagactc ccccccatttg aagtcaatga ccgtaaatgg cgggctctggc 540
attagcaca gtagcgcgct tttgggaat tttctacttg gcagctacat taagttttag 600
taaocggcct taaccgagct atccagggct ttcgcttttt gcgagctacta caatggggctt ggatagcgg 660
ttggactcag ggaaaaacta atctccctaca ccttaaggtc caatggagtt ttttttttgc 720
acccaaactc aagggacttt ccaaaatgtc ttaacaactc ccggcatttgg aagcgaatttg 780
gcggaggcc gggagtgggag ggtgtctata taacgcgccc gttttgctgt aagttggtct 840
ctctggtagc accagatctag cgcctggtag ctctctgtg tggattgggta cccacggtttt 900
aagctctaat aagctcctgc ttggagtttt caagagctgt gtggccgctt ctgtgtggtc 960
tatggatata agatagccct ccaccccttt tagctctgtat ggaaaaattcc tagcagtcgg 1020
gccggaaac gcggcttggga gcgaagggga aaccagaggg gttccctctga ccggaggactc 1080
gggtgtgcga aggcgcacag gcagagggcg aagggcgggc actggtagtt aagcgaacaa 1140
cttggtagtt cggaggttaa aagggagagc atgggtgctga gaggctcagt attaagcggg 1200
gggaaggattc atctggatag gaaaaatatc ggttggagcc aagggggsaa aaaaaaatatc 1260
aattaaaaa tataataggg gcagcgaggg agctgagacg atggcccggt aatocctggcc 1320
tgttagaacc atccaagagg tgtgacccga gctacaaaco ctcctttcag 1380
caggatgca acagttctaa taactttattca acctacctcag tgggtgcttc 1440
aagggagtta aaaaagaccc acacgaggga cttaacctca gattagggag aaaaagaa 1500
aagagtaagc caacgcacag caagcgcccg ctgaacctcc gcacccggag aggagatcag 1560
aagggacactc ggagagaactt ttataaatata aataaaagttg aaaaatagtc acctattaga 1620
gtcggcaca ccaaggccac gagaagatgt gtcagcagag aaaaaagacag aaggggaata 1680
ggaggctttgt tcctgggatt ctgtggagcct cgggaagca ctagggggcc agcgtcagtt 1740
aagctgaggg tcagagcagc acatatcagtg ttcgttggat tggagatcag cccaacggc 1800
cgtggggttc tgggaggca acagtcctgt tggcacaactc catcgctggg ccaacagcag 1860
tccagggcaca gaaacctcgg ctgtaaagag ttaaacagag tccaacgctt cccggggatt 1920
tggggcttgct ctggggaaacct cttgctggtc cttggaatgc tgggtggtagtt 1980
aataaatccttt ggaacagatc ttggaacctc cagacgctgga ttggagttgg cagagaaatt 2040
aacaatcata caagctttaa atggcactta attgagaaact cggaaacocca gcagaaagc 2100
aagggaaag cattatagtta attggataaa tggggcagtt tgtggaaatt ggatgaaatatc 2160
aacaatcgtc tgcgattatc aataatcata atataagcagc tagggaggtgt ggtaggtta 2220
<table>
<thead>
<tr>
<th>59</th>
<th>tcaccttggc cactggagag ctgcacaaagt aagcggcgcg cagctctaga attcgtatcc</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aagctttatcct ataactacacc tctggtattac aataatttgtg aagaatttagcg tgtgattttcc</td>
<td>4680</td>
</tr>
<tr>
<td></td>
<td>aacatagtgttc tcctttttaaac gctatgttgaga taagtctgttct taaacctccaa atatctgtggtg</td>
<td>4740</td>
</tr>
<tr>
<td></td>
<td>attggtcccc gtatggtgatc cttttcccttattgttata aatactgtggatc atgttctttcc</td>
<td>4800</td>
</tr>
<tr>
<td></td>
<td>ttataaggctct ctgctgitcctg tgcaggccac aagggcggtgg tgcgaactgt gtttgctgac</td>
<td>4860</td>
</tr>
<tr>
<td></td>
<td>gcaccctccc ctgggttgg rarectccac acctgtcagc tctcttctcg ggacttctgct</td>
<td>4920</td>
</tr>
<tr>
<td></td>
<td>tcctcccttc aattcgg cacgcggcaact accccggctgtt cctgctgaggtg aatgggaaat</td>
<td>4980</td>
</tr>
<tr>
<td></td>
<td>cggggtggccct ctgctcctgg gacgactctgtg gttggtctgc gacgctggccac</td>
<td>5040</td>
</tr>
<tr>
<td></td>
<td>ctggggtgtgctgcctgta tcgtcagctgtg atggccggtcgtgcctggtg aatgtctggct</td>
<td>5100</td>
</tr>
<tr>
<td></td>
<td>attcgcccccc tcaactcgagc cccctgctgctg cccctgggtgc cccctgctgc</td>
<td>5160</td>
</tr>
<tr>
<td></td>
<td>ctccgagctacctgcagc cccgccctgtg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>5220</td>
</tr>
<tr>
<td></td>
<td>catctgataa agcctggcgctgctg cccctgtgctg cccctgctgctg cccctgctgctg</td>
<td>5280</td>
</tr>
<tr>
<td></td>
<td>geagcgtcagc cttgctctgtg cttgctctgtg cttgctctgtg cttgctctgtg</td>
<td>5340</td>
</tr>
<tr>
<td></td>
<td>catcagccctctt caactcgacggc cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>5400</td>
</tr>
<tr>
<td></td>
<td>cacatcttataa aagaaaagggg cggacctggc cggacctggc cggacctggc</td>
<td>5460</td>
</tr>
<tr>
<td></td>
<td>atgtctgggtgctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>5520</td>
</tr>
<tr>
<td></td>
<td>cggggtcggc gacgctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>5580</td>
</tr>
<tr>
<td></td>
<td>gacgctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>5640</td>
</tr>
<tr>
<td></td>
<td>cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>5700</td>
</tr>
<tr>
<td></td>
<td>cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>5760</td>
</tr>
<tr>
<td></td>
<td>cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>5820</td>
</tr>
<tr>
<td></td>
<td>cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>5880</td>
</tr>
<tr>
<td></td>
<td>cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>5940</td>
</tr>
<tr>
<td></td>
<td>cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6000</td>
</tr>
<tr>
<td></td>
<td>cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6060</td>
</tr>
<tr>
<td></td>
<td>aattgcctgtgctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6120</td>
</tr>
<tr>
<td></td>
<td>cagcaaggggg gaggtggtgg aagacattag ceggctagcttg cggatgtcgg tggctttctcg</td>
<td>6180</td>
</tr>
<tr>
<td></td>
<td>ggtttctggag cgctggaaac cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6240</td>
</tr>
<tr>
<td></td>
<td>cggcgggata agcgccgggg ggtggtggtgt taacggagcagagcagcagacctccgagc</td>
<td>6300</td>
</tr>
<tr>
<td></td>
<td>cgcctcctgcagccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6360</td>
</tr>
<tr>
<td></td>
<td>cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6420</td>
</tr>
<tr>
<td></td>
<td>cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6480</td>
</tr>
<tr>
<td></td>
<td>gagcgtttttttt cggctgtttctgc cggctgtttctgc cggctgtttctgc cggctgtttctgc</td>
<td>6540</td>
</tr>
<tr>
<td></td>
<td>aactggaaccagacaac aactctctgtgctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6600</td>
</tr>
<tr>
<td></td>
<td>gagttgggctgctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6660</td>
</tr>
<tr>
<td></td>
<td>ctcggatctt cttgtcctaagc aggctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6720</td>
</tr>
<tr>
<td></td>
<td>aagctttttaa ctgctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6780</td>
</tr>
<tr>
<td></td>
<td>gccgctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6840</td>
</tr>
<tr>
<td></td>
<td>aactccggggctgctgctgctg cccctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6900</td>
</tr>
<tr>
<td></td>
<td>ctaatattatttcag gacgactgctgctgctg cccctgctgctg cccctgctgctg</td>
<td>6960</td>
</tr>
</tbody>
</table>
tagtgaggag gtttttttgg aggctcaggg ttttgcacaaa agcttccggg agcttgata 7020
tccatctttgc gatctgctca gcaeggtgtg acacattaac tctgcatag tatacgccga 7080
tagataaa agaacaagtt aggaaactaa ccatgtcggaa gttgcagct gctgtcgcg 7140
tgctcaacgc gcgcagagtc gcgcagacgg ttcgagttctg gaccgaacgg tctgggcttc 7200
cocgggctgc gcgcgagggac gcagtggcg ggttgccgg gcgaagcgtg acocgtgatct 7260
tcagccgctg ccaagagcgcgt gttggtcggc agacacacct ggcctgatgt gttggtcgcg 7320
gcctggaaga gcgtgtaaagc gttggtcgcg agcctgagtc cacacaaactt cggaggcct 7380
cgcgggaggg ctagaacggc atcgccagag agocttgaggg gcgcgaggttc gcgcctgagc 7440
accggggcgg cagctgctgc cactgtgctgc ggcaggaggca ggcagcagac gtcgtacgcag 7500
attgtgattc ctcagcgccgc ttctatgaaa ggttggtgctt gccgtgctctttt ctccggaggt 7560
cggtcgaggt ctcgcccgac gcccgtggtg gttcccagag gttccttggc caccacacta 7620
tgtttattgc agtttataat ccacctaaat aacgcaatttg cattcacaatt tcacaaacta 7680
aagctatttt ctcattgcttc ttctcgtttgt gttgcctcag gatcctcaattc gtatcttttc 7740
agtgtgtcct agcgcgacgc ttcgttctgac ggtggtcgcga atcgcttgctc ctcgagctcttg 7800
cgggtgctgg gagcggctgct gcgtctcaggt ctccaggtagg aagccggcgg cagcagacat 7860
ccggtgctgg gcgcgaggttg ccgcggaggc gggatctgtag ggtgcggcag cgtgctgcgc 7920
cgcgcgttctg cacgtgccgg gggacggtgag gtcgtgctgg ctccagggctt ccgcgtttttt 7980
ggagaggggg tgttcgagtt cggcggcttt ctccagggctt ccgcgtttttt ccgcgtttttt 8040
cggggtcgc gcgtcgttcc gcgttgacct ctcgctatgta gggcaggaaaa cggcgttcca 8100
cagagctgg gagactgcac gggcagaaaa aaatgagcagc gcgcctgaggg cggcgttcca 8160
accgaaaaacc gcgacctgct gcgcgaggtgc ccacggcagg gcgcgaggtgc ccacggcagg 8220
ccacgattgg gcgcgaggtgc cccagcgcgc gcgcgaggtgc ccacggcagg gcgcgaggtgc 8280
ccgcgggggg gggaggtgatg ccgcgggtgg ccgcgggtgg ccgcgggtgg ccgcgggtgg 8340
acgtgtcgc ccgctctggc gcgtctgggc ccgctctggc gcgtctgggc ccgctctggc 8400
atcgctgcag ctcgctgtgt ctcgctgtgt ctcgctgtgt ctcgctgtgt ctcgctgtgt 8460
agccgcagcc gcgcgtctgt ccaccatcag atccagtgcgc gcgcgtctgt cgcgtctgt 8520
actatacgac atacgagcgc gggcgtgtgt gcgcgtgtgt gcgcgtgtgt gcgcgtgtgt 8580
gtgcttacgc gcacgcctgt gggggttcac gcacgcctgt gggggttcac gcacgcctgt 8640
gtatgctggc gcgtctgggc gcgtctgggc gcgtctgggc gcgtctgggc gcgtctgggc 8700
ggacacaaac cccggtgcgc gggcgtgtgt ggacacaaac cccggtgcgc gggcgtgtgt 8760
ggacacaaac cccggtgcgc gggcgtgtgt ggacacaaac cccggtgcgc gggcgtgtgt 8820
agggaaaac gcgtgggagc tgtgcgtgtc gggggttcac gcacgcctgt cgcgtctgt 8880
tctctttaaaa ttaagaatag tgtgttgtgtgt cgagacacaa cccggtgcgc gggcgtgtgt 8940
tgtgcaggtgc ccacgccttt atccggttaa ctcggcgtt gggggttcac gcacgcctgt cgcgtctgt 8900
catcctcgt ctgcgtgcgt gcgcggtgatg gcgcggtgatg gcgcggtgatg gcgcggtgatg 9060
tgcgccggcg tgtggccagat atccggtgaag ccagcgtgcc gcgcggtgatg gcacgcctgt cgcgtctgt 9120
ctcagtcgtgc ctcgctgtgt ctcgctgtgt ctcgctgtgt ctcgctgtgt ctcgctgtgt 9180
tgcgcaagtg cgcggctgat gcgcggtgatg gcgcggtgatg gcgcggtgatg gcgcggtgatg 9240

cttcatccag ctgcctgtcc caacgctcaca gcggagtcac atgaccccc atgctgtgca
9360
aaaaacggt tagtcccttc ggtctctcga tcggctcgat agaataatgg gcggaggtgcg
9420
tattctcctat ggtattgcca gcagctgca attttccgct attcatcgca tctgtaagat
9480
gttttctcgt ggctggtgag tactacaca aagttctctg agaataatgg atggccagccg
9540
gagttgcct tcggctcggg tcaataacgg ataataacgcc gcacagatc agaactttaa
9600
aatgctctct catattgaaaa cgcctctcgg tctctccgg gcggaaact ctcaggtatc ttcgcgcttg
9660
tgagtagcct ttcgatgtct cccccctgtg caccccaactg atcttcggca tttttactt
9720
tcaccagcgt tttgttctgg gcaaaaaacag gaagggcacaag tggcgaacaa aaggggaataa
9780
gggccacagc gaaatttctg atacctatac tttctcttct tcaattatat tgaagctatt
9840
atcgggctta tgtcctcact agggcagaca tattttgatt tatttagaaa aataaacaac
9900
taggggtcttc ggcacaacttt cccgaaaggg tgcacaagtc e
9941

<210> SEQ ID NO 2
<211> LENGTH: 9206
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Constructed plasmid vector
<400> SEQUENCE: 2

gtgcagccat ctggagatct cccgatcccc tgtggtgcac ttctcgattca atctgccttg
60
tagccgcaata tgaacccgac tctgctttgt gcccttcggt gctgtagttg
120
ggccgagcag aatttactac acaaacaggg aaggttcggc cgacataatt gcggaggtcct
180
tgcggagtat tggcctgcttc gcgtgcgttc ggcagatagc aaggtggggt
240
taggtgattg gcacagtttt tattatgtaa ataatttttag gcggatcctt gtagtagcct
300
atgagacggt cgcgctctta taacttacgg ttaacctgga ggcctgcggc cccctccttg
360
acccggcggc attggcagc ataatacggt atgttcccat agtatgcgcca atgggacctt
420
tccttcctg tcctgcgggt tcgctattac gtaactctg cgcctggcct gccctgaca
480
tgtatctcat gccagtaacc cccctatttg agcttaattg cggtaaatg ggctgcctggc
540
attatttctca gtaatgccac ttttgagact ttcgtctcctt ttcgtagctc ttcgtgttag
600
tcatctctct acetctgtgc atcgctgttt ggtctatcg ctacggggtg atgtggcgtt
660
ttgtcttctgc ggtttccag ggtttcgtg cagttcggt cgacctgccct ttcggtgctt
720
accccactca agcggctcctt tccccactg ccagctgcct gccctgctgtg cggcattaac
780
gggctgggct tgtttttcag ggctgtcatt gagctcttata ttcgaggcgg gttggtgtct ttcggtgctr
840
ctcgtttcag aacctatcag gcggctggag ctctgtgtgt aacagggcaca ccctgtggtt
900
aagcctcata aacggctcag ttgtggtgct caagtaggt gcggcctgtc tttgctgagc
960
tctgtgacta aagatcctcc tcaggtgctg cggctgtctg atggcgtggtg cggcgtggtg
1020
gccggacagcg gcacgtgaga gccaagggca aaccagacga gttctctcga cgccagaccc
1080
ggttttttctg gtcagcagcag cagggctgggc cagggcggc gttcgtgagc aagccaaaag
1140
ttttgcttctg cggagtcttg aagagagagc gggtgtgcga ggcgcgtcag attaagcgccg
1200
gagagctagc atcgctgtgc ggccacagtgg cggggaagag gggggggaa agaaaaatata
1260
aatattttca tattaataagc gcacagacgg agctagaacg atctcagttt atctctggcc
1320
ttgtggagtc atgcgagagc tgtgaggca gtcacacca aaccttcagc ttcgtttcag
1380
caggactaca agaattctat cttactata atacagcagc aacccctctat tgcgtgcatac
1440
aaagagtaga gataaaagac accaaaggaag cttaagcaga gataaggagaa gagagaaaca 1500
aaagtaagcc cacccgcacc caagcggccg ctcaactaca gcctggaggg agggagatag 1560
agggcaatgt ggaaagaagta attataaaa tatataaagt taaaattgta cccatattga 1620
gtacacccca ccaagggcag gaaagagatt ttgtgcaagag aaaaaagac agttggaata 1680
ggacgatttgt tcttgggtgtcttgggaaca gcaggaagcca ctatggggtgc aagtctcaat 1740
aoctgctgcag ctaaggccag acataatttg tcctgttattag tcgcgccgaca gaaacaattg 1800
cctgaggtca tctacgcccc aacagcactctg ttcacactca cagctctggg cataacagcg 1860
ctccagggca gaatctctggc tgtggaaga taacctaaagg atcaacagct ccttggtgatt 1920
tgggggctct ctgggaacact catcttcacc acogtctgctg ctgggaagtct tagttggaat 1980
aatataatcct tgtgacactc acgacctggca aagctttgga gagaagaata 2040
aacacttaca caaatcctat cccactctta aataggaatt cgcaccacca gcaagaaag 2100
aattgcaag aatatgga attagataaa tgggcaagtt tcattgagggt ggtaaacata 2160
acactttgcc tgtggcttatatatatttct atatagttag taaggacgctgt ggtatgttta 2220
agaatagttct ttcctgtacat ttctataagtg aataagagita ggagcaggtata ttccacattga 2280
tccttacca aacacccctgc cccagccgggg gacccgaca ggccgcaagag aataagaaag 2340
gaaaggtggag agagaaagag agacaagacc attcattagtag tgaacggtac gacactcgtt 2400
ggctcaaccc tgcagacaaca tggcagatatt catcaccata talltaaagaag aagggggggt 2460
tgccccagtac aggctgaggg aaaaagtatt agacaaatata gcaaacacca tcaacaactaa 2520
agatattca aacattttcaca aacaaatcctac aatattttaagg ttatatataa gggacagcac 2580
agatcaggttt tgttttaacttta aaggtgacgc gcacgtcggc cccggtttttg ggcgcrcgcc 2640
cggggeccce cctccttcacg cgagcgcctg ccaagctcaga ccaagggcgc aggacggctt 2700
cctgatccttc cgcccgagcc ctcagggcag cggccgcttt tcataaagc tggccttagt 2760
aacacccagtt ctgacaagag gacatttttag gaggggctttt gggggtcctt agggaacctt 2820
ctcccccctc agaagagcgg aacggcaggg aaaaattttg ttctttccgc gattcctgqgg 2880
aggtaattttct cggccggcgt ttaagcgggatt tatatatatatag ggcacggtc ggtgtgcaca 2940
agtattttcc gcgcacagcgc ggatatttgg gcgcggttttc gcctttgtgct gccttgtaac 3000
gtcaactttgg tattttgggct gtgcattggc ggcggggtgt ttcgctgccg cgggggcttg 3060
cgggtttggag gagaagtgttg gagaaggccgc ccaaggggtgt agtctggtgct gcgcgaagaq 3120
gtgcgcgtgta acgggggtgtc gggggagac cgccaaatgtt gggggtctcc ggtgttgtttt 3180
agtggcaagct cggcgtttag ggtgcttgaa ccaggggtgg gcctgtggtg 3240
agggagcaca caacccgcttc tgcagccctgc gctacatcgg gcacggtcct ttcggtggttt 3300
agtgggggtg ggccacactcccc cggggcccttg aggtaggttt tcgcaactgac cggagaaccc 3360
gggggtttgc tcctggggcg gggggagcac ttattgttgc cgggggtcta cgggacccctg 3420
acgtttttgg gcgcgcaagct ccggctggcg gtcgtgtcct gcggcgtcct gttataattt 3480
caaggggtgg ccacccctggt gcctgtggct ttagggcctt ttcgctggcg cggccgaggg 3540
gtgccgggcct agggtgactt ctcctgcagtc gcaggggcgc gcaccccttg ggaggggaggg 3600
gtataagtgag ggtgtgcttt cttggcctgg ttttactbtc ctatcttttttt aatagctgta 3660
agctcgcggt tctgaactttc gcttcgggggt tcgcaggtgt gtttttgtag gtttttttag 3720
caacctctttt gataaatcctcttggtcaca tattgacttt tcaatgttag actagtaaag 3780
ttcctgccag tgtacctctg aaaaattgcc gctaaattct tggcggttttt ggcttttggg 3840
ttaacagag tcggtaaacc tcggagggag gcggattaag ttataaagtt ttagctatg 3900
cacccctgg aataaacaat ttttgaagaat ttgctagttg aatactacta ataagctcctgct 3960
ttttcatatt tttgcactag gttttaaatgcta tttttgcttta agtacttggg cccctgtttg 4020
gttttacttt ttctctctct gtataaactt tcgctggactg cttttctcttt ggtggttgag 4080
cctcggtctaa gggccgaggag ccgctgcgct gcgtcccttg cctgggacgc cccctactgt 4140
tggggctatt gccaccaaac tctgggcctt cccgggacct tcgccttttc gacaatgcttgg 4200
gcagggggct aacactacgc ggcgtcctct ccggtctgctt ggcacgggctt cccctgtttg 4260
gcgacrgccat atccctgctg ggtgtcgggg aatactactt cttttctctt gctggtgcctg 4320
ttttgctgcc cgggtcggttt cgcgaggaac ctctttgctt gacgtgacctt ggcggcgatg 4380
cacccgcggcc tctcccctct gccgggaccc gcggttcctt ggcacagtgc ccctctgttcct 4440
tccagccctct cagccagcgc gcgcagctct gcgcgtgcttt gtcgttctctt ccggggttgt 4500
tcctggagggc ctgtaagagc caagaagggg gcgggtgtgg gtttccctctg ccacccctgtc 4560
gctttgtcct gccggtgctct ggtgtccgttt caccgcgctt ggggtggtctt cctctgttcct 4620
ggtttcttgg ggtgtctcct cttttgcttg gtttttctttt gttttttttt cttttttttttt 4680
gaagggggtc ggctgtcttt tcttctctct gccggtgcttt gcgtttttttt tttttttttttt 4740
attccaccac ccaacaggttt cttctctctt tggagactct acaacagggag cgggtgtctt 4800
agatataccg tcggcctcct aggctgcatt aacgctttagt cctgtgctgct cggggtgtgt 4860
gacgcgggca atgagcaggg aacgcgctcc ttggttcctcc tctgagcctt ggggtggttg 4920
gtcggcaggg gccgaagcagc ttgctgttct cttttgcttg ccgtgggtgt gtttttctttt 4980
ggcgcgttgt ggcgctgcccc gcgtgctctt cttttgcttg gtttttgtgttt cttttttttttt 5040
tgggagctcttg cttggtttgc ggcttttctc cgggtgggctt cgggtttttt ggggtggttg 5100
ggttctctctt tggagtccct cgggtgtgctt ggtgctgtct tggacgtctg tgaactagag 5160
cgtcttcag cttggtctcct cgggtgtgctt ggtgctgtct tggacgtctg tgaactagag 5220
ggcgtgctct ctggtgccct ccgcttttcct tggggtgtctt cgggtttttt ggggtggttg 5280
cgtggaaagtt gcgcgtctcc gcgggttccttt cttattt
tatgcagagg cggaggccgc ctctgcctct gacgattaac agaagtgg ttcggacttt
6240
tttgagggcc tagcgtcttgg caaaagctcc cggagacctg gttatatcctt tctcggatat
6300
gatggcagct gttgaaatgca taattacagag gatataataa gggcatgagta taattacaga
6360
agatgagggtaaa cacatcagcgg ccacagttcag atagtgccag cagccagctaa
6420
aagttgcagtg agggtggcg ctctgccgatt ggcggcagta cggcggcggt ggggtgaat
6480
agagcagcactg cgcggctgttt gtcgagggcg atcgtgacct ttctcagcag cgcgagctta
6540
acaggtgggt gcggagaccg accctgtgctc gggctggttgc ggcggctgctg gacgagtgtg
6600
acgccaggtgt ctggagggct gttgccacca gcctccgagg cgcctcgggg cggcagcatg
6660
cogcgagcgg cggcgagacc cgggctcggg agttgcccct ggcgacccgg gcgggcaagt
6720
ggcggcacttt cggccggcag gcagagagct gcagagagttt gcagagagcg gcagagagctg
6780
cgcctcctca tgaagggcttg gctggtgagaa cgggtttctg cggagccggc tcgatgtgc
6840
tccagcgaggg gatcctcagc cttggagctct gcggccaccg caacaatggtt attgcaagtt
6900
ataatggtta caaaattcagg atacatgcat caaattttcc caaaatcagaa ttttttccct
6960
tgcaattct gttgtggtct ttccaaacttc tgtatgtgta tgtatatagttg tggatgtgta
7020
cgaagctcttg ctgagtttcg gcgtgatcct gcgtcattgct ctctcctgtg tgaattcgga
7080
atccctgctaac attacacgg ccatacagag cgcgaagcat aaatgtgaaag gctgggtgggt
7140
cctaatgagt gcgtataaattg ctttgagctcg actccgccgcct tccagcggtg
7200
gaaacgcgtgc gttggcagct cattctagag cgttgaaccaag cggggggtaaggc gcggggttc
7260
gtaggggccc ccctggctct gttggccagct gcgggtgggt gcgggtgggt gcgggtgggtc
7320
ggagggcggt ttacagctaa tccaaacggg cttactcggt gatcctcggg atcgggggag
7380
aagccaggaaa gcacataaag gcggcgggag cggccagggc cggccagggc cggccagggc
7440
cggtgggtgg cctccctcagc atgcctcgcgg cccctgctcg ggttccgtgcag cggccagggc
7500
caagtcaggg cggccagggc cggccagggc cggccagggc cggccagggc cggccagggc
7560
gtccgcatgt ggtctcctgt gcctcgctgt gcctcgctgt gcctcgctgt gcctcgctgt
7620
tccctcgggaa acggcggctgg cttttctctgta gtctctgtctgt agtctctgtctgt
7680
aggtcggcgt gcctcagcct gcgtctggct gcgcggccgc gcgcggccgc gcgcggccgc
7740
cottataaggg cttgagctgca cccggcagag cgcagattcct tggccacggg cttgagctgca
7800
ccagccaggct gcgtcagcagggg atgcgtcagcg gcgtcagcagggg atgcgtcagcg gcgtcagcagggg
7860
tgagttggcg gcgtcagcagggg atgcgtcagcg gcgtcagcagggg atgcgtcagcg gcgtcagcagggg
7920
tgagttggcg gcgtcagcagggg atgcgtcagcg gcgtcagcagggg atgcgtcagcg gcgtcagcagggg
7980
tgagttggcg gcgtcagcagggg atgcgtcagcg gcgtcagcagggg atgcgtcagcg gcgtcagcagggg
8040
aagcagcagctgctc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc
8100
aagcagcagctgctc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc
8160
aagcagcagctgctc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc
8220
aagcagcagctgctc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc
8280
aagcagcagctgctc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc
8340
aagcagcagctgctc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc
8400
aagcagcagctgctc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc
8460
aagcagcagctgctc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc cttcaacggcc
8520
-continued

catgctac aggcatcgtg gtgcacgctc cgcgttcttg gtaggcttca ttcagcctcg
0580
gttcccaacg atcaagggaca ttacagatc ccccatggta ggtcaaaaaa ggggtaagct
0640
ccttggtgcc tcggcgattgc gcggggcgcggc gccgatacttc ctcgatgta
0700
tggcagctac gcataatctc ttacagctcg tcgcatcgtg aagatgttct ttcggtgaat
0760
gtgatagtac aaccagatcc tctgagaaat agtggagcgg gcacgagcgtg tcggctgcgg
0820
cgctgcaacct aagaggttac caccggcaccc atagcagacac ttacaattttgtt ttctacatgg
0880
gaaagcggct tcggggagga aacatctcag gacatctcc gcgtggagag ttcagcagcg
0940
tgtaacccac ccagctgaccc ccaaggtctt cagctctcctt tacctccacg caccgggtctg
0990
gtgtagacaa aacaggaagcg cccatacgcc cccataagcg aatcagggac caagcaaat
1050
gttgataact aatcactttt gtaagttttag agaagattaa aacaattgaggttgccgca
1110
ccttcaccc gcacaagttgac cctgac
1160
<210> SEQ ID NO 3
<211> LENGTH: 8435
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<223> OTHER INFORMATION: Constructed plasmid vector
<400> SEQUENCE: 3

toatattcgg ccaattgaca tatttttcag tcagttata gacaaatcag atatgggcta
60
tggccacttg cctacgtttgc atcatacatca ataaatgttc atgcattgctg
120
aataagacgc ccatgtgtgcc atggattatg tcataatctg ccctgtggtg
180
gtcttaaggct catagcccat atatggagtt ccgctgattca taacctacgg gtaaagggcc
240
gctggtgta cggcctaccc gcgggtggcgc aacgggaatc ataagcaagtt cattgcctcag
300
agtaaacgcc attgaagcttc tccattgcag tcaaggggtag aagtcatttc ggggcattagc
360
cgaatttgac tggctacag tggcatttat gcgaatctgac ccctgttacctg cggcaatccgg
420
ccgtaaatgg cccgctggac attagccca gtaatggcaco ttaagggact tttcaatcrtg
480
gcaatcact taacatattg tcaattcagtt attctgtgct cggcattcag ccctggctgc
540
catgggtggt ggaaaaggct tgtacacccc cgaatttcgc agcctcaccg ccctggtgctg
600
catgggagt ttgttggcgc cacaataatc agcggacttt cccaaatgtc tagcaatcag
660
cggccgggc ccggctgggc gcggagattc ggtggagcgg gcgggggact ggtgtggtggt
720
agccagctgc tgggctggt gacgtcagc agtacggttc atcactcagt caccgtcagtt
780
agtaaattt caaacggcagt ccggctggtc atcgtgattc aatcattcctt gaagttggtg
840
gctctcttgctt gaaaaagtt gggtgctgag cttgggggag ttggcagatc taagattcaag
900
ggttacagca gaggattgga gaaaccattc gggacagctg tcggagggac agagaagact
960
cctggcattt tggcgtacag tattgggttc ctggctggag cttcagctcag ttcgacaccc
1020
aggtgtccag cccaggttaa ttaaggttag atcacttaat aacgactcact
1080
ataggtcgct gcgtggtcttc aacgatctgg acgtcgtttgc gacggacgac ccacactcggt
1140
cacggcgag tgggttgtgc gcataatgtc ggctctgctc gacagggagc gcacagtacg
1200
tcggcgcaga cctccagacg cctgtgatc cctggtgaag aactgtaagc ataggcctctg
1260
cggctggcc cttcagctca tattgggttc cggcttgtg ggcacatgca tttggagcatt
1320
ttcctgacg tgcgctacat cggtgtcagt ccgatatcag taaatagaag ttaaaggtgctg
cagccctgtt aagatgagc aggtctggga cgaagcggac gataacaacca taagcataca

1440
gacctccgc aggctgtgat acgcacaaag cggagcagca agcgcacaca aagtccctgta

1500
catgctgctt aagctgtgat accaacacga tgtctagtga taagcaatcg ttaagaagaag

1560
cacactctgg acacatcagga ttaggccctc acggacgigtg agaaacctgta gctacaagga

1620
ataaataatct ctcagcaacag gcgagcccgg gcacagcctag gacgctagca gcagcctagc

1680
caacctcaga aagctctgta tggggcccg caagataaaa ccacattttg tgggagcgga

1740
aaataatgat ctacccctccg ttcaaggtta aaaatcctc atcagaggtg aagacagctt

1800
ggcgcctaca actcgcagct atcactactg gcaccagggcg agaaccgcacg ctataatac

1860
tctacctggaa gaatcatcag gcagaaattta cgccaaacgc gcatcttggga gaaatacct

1920
gtatagttgc aaagcgcgag actaacaagac gggacggtct tcagccacgc agacacatcc

1980
ttgattgccc gcacatcagag atgcgcctcg ctataagagc gacccaaagg aagttgctttt

2040
caacatccgc gcgttggcga gacactgaca cccacagggc caaggggaat tgcctttgc

2100
cttctgactg atccccagta cttgcgctgtt ccttttgcgg caagccgcgc atgcattataa

2160	
gttgctaaa cacatcgcgc tcacacttta taacacccct tgacattgcg ccacacagca

2220
gagactaggg gcacacaacgc atccacaaga cagatggact gtcggaagag cggccagaga

2280
tttccacgct gcacgagagtgc gcctgggaata catatgagcgc acagtgactg gctgtgctg

2340
catgcccaag gctctgacag caggagaccg ttcagggagt gcacacagaa tagtcagaag

2400
ttcactcact gcgcctatcg tgcataacct atatccggct gcgcacagta ggtgcgcgtgct

2460
gatagttggtc gttaggtggta ctgctgttga ttgctttcga gctgcgctgg aagcgctgac

2520
gccactccgc cttcgccgaa aagcggttaat ccacattcag ctggttctggt tggctgtgctg

2580
taggtcgcgtt cagagcttaa gcgttacagc taatgtgttt gcaagcagctg

2640
gcctgtcctg ctttggcagct cttgcctactt gttctggcct tttcctgttct tgcgcgctgtt

2700
tggctgctgtc ttttggtaggt tggcgcgctgcc cagctggaag cagttggagtctg

2760
catcgaacct gctcaaaagt ctcttcagag tcgcagacgc tcagacgaatt gcgtgctggtt

2820
aagggccaggg tgtaccccgct ccaatctggga gactacaagtc aatgctctcg aggcttggctt

2880	
ttcacccac ccagagtaaa ttgctgcaac attcacaact gttgctccct cccacaaaaat

2940
caaatgtgcg gcgctgttgt aatgttacgc gcggcttcct gcagctttata cctgcaaggt

3000
tcgccgctgg gctttcctc tattttgggg aggagcggca ttttttttgtgc acaagttggg

3060
cagcaagtgc atgagggcgt aagttgcaat gtggatacgg gcctggtgctt acacgcgcga

3120
ggcgatgaag gtcgcaacgg cggcgagtaga atgtcgactgta tgcgtatgctt atcgcagacg

3180
tacgctgttctcttgattgg gcgtgctcgc gcgcttggta aagcgctctgg

3240
agctgctagt gcgcacacggc tggcagcgc gcagcgtcca cggcggcag cagacgctgtt

3300
tcgcgctgctt ggtgctacgt atgtgctccc gcgtcagggc gcgctttggag gcgcagcgtg

3360
tgggacaccc caagcattct cttggtactg caagcattc atgacgcagca cagacacagt

3420
gctactttgg atcctggcgc gcgtaggtcg tgcgtccgtct aagcggtctg ctcagagttc

3480
tgatagttgg aaaaacaacct cgcgcgcggc atgcgcaggg aacgcacccct ggggggtgttaa

3540
gatgactagc aaccagtcctt gcgcacagct cgggaggcct cgaagctttt ccacattatat

3600
tgcacccggtt aacgagttgct ttttgggacac atcaagatcgc ccatccagtc cctagttctt

3660
atgtgaagtgc atgactggcg ctttacccgc agacttgggc gggtctgcca cattagcgtct

3720
-continued

tgtacgac gcgaggtc aatggcgcgt acattcgat tgtgacacag caaacctcca 3780
agtagcagc aatgatcgc gcggaggaag ggaggtgac agtcacttta gcaggccgag 3840
tcagacggcg agcttctcg ttgcgctgtg cggggaaga acaatcgca atgcagatgt 3900
taaacacca ctgctggccat cgggcaaaac aatgcaacag aaaaattcaacg 3960
gcggatctca aaaaacctat ggcgggtgt catggccttt tgggcccgg ccctcgctcg 4020
atgaatata gcggtctgac tcgggtcgtt ggggttctt ggggttccg ccctcgctcg 4080
agcggacgaa tttggtcggct cccggttggag aggttgaatt tttggtcggct tttggtcggct 4140
atcaggtgat ggctttgac aatacccaac tgaataagag tgaataagag 4200
tgagcagag ctgttctgcttt ttgttcttgctttttgt tgggaggtt ctgttttttct 4260
cacaacaa atcggtaaac ttcgtaaatc ggtgttgggt ggtgttgggt ggtgttgggt 4320
aagcagttc aatgctgtaa ggaacagtaa ggaacagtaa ggaacagtaa ggaacagtaa 4380
aagcagtaa ggcgggatgct gccggtcatct cgggcaaaac aatgcaacag aaaaattcaacg 4440
tgagcagag ctgttctgcttt ttgttcttgctttttgt tgggaggtt ctgttttttct 4500
gcggatctca aaaaacctat ggcgggtgt catggccttt tgggcccgg ccctcgctcg 4560
ccagccgctcg ctggctggcc gtgggtcggct cccggttggag aggttgaatt tttggtcggct 4620
atcaggtgat ggctttgac aatacccaac tgaataagag tgaataagag 4680
gcggatctca aaaaacctat ggcgggtgt catggccttt tgggcccgg ccctcgctcg 4740
gtggactct tggcggcacttt tgggaggtt ctgttttttct tgggaggtt ctgttttttct 4800
tgagcagag ctgttctgcttt ttgttcttgctttttgt tgggaggtt ctgttttttct 4860
taataacgt tgggaggtt ctgttctgcttt tgggaggtt ctgttttttct tgggaggtt ctgttttttct 4920
ttcagcact ttcgctggat ttcgctggat ttcgctggat ttcgctggat ttcgctggat 4980
aatgatcgc gcggaggaag ggaggtgac agtcacttta gcaggccgag 5040
gcggatctca aaaaacctat ggcgggtgt catggccttt tgggcccgg ccctcgctcg 5100
aaacacca ctggctggcc atcagcggag gcggaggaag ggaggtgac agtcacttta 5160
gcggatctca aaaaacctat ggcgggtgt catggccttt tgggcccgg ccctcgctcg 5220
ttcagcact ttcgctggat ttcgctggat ttcgctggat ttcgctggat ttcgctggat 5280
ggcggaggaag ggaggtgac agtcacttta gcaggccgag 5340
gtcgaacgt cccggttggag aggttgaatt tttggtcggct tttggtcggct 5400
tgcggcagt tgggaggtt ctgttctgcttt tgggaggtt ctgttttttct tgggaggtt ctgttttttct 5460
gcggatctca aaaaacctat ggcgggtgt catggccttt tgggcccgg ccctcgctcg 5520
tgcggcagt tgggaggtt ctgttctgcttt tgggaggtt ctgttttttct tgggaggtt ctgttttttct 5580
ttcagcact ttcgctggat ttcgctggat ttcgctggat ttcgctggat ttcgctggat 5640
gcggatctca aaaaacctat ggcgggtgt catggccttt tgggcccgg ccctcgctcg 5700
ttcagcact ttcgctggat ttcgctggat ttcgctggat ttcgctggat ttcgctggat 5760
atcaggtgat ggctttgac aatacccaac tgaataagag tgaataagag 5820
atcaggtgat ggctttgac aatacccaac tgaataagag tgaataagag 5880
ttcagcact ttcgctggat ttcgctggat ttcgctggat ttcgctggat ttcgctggat 5940
gcggatctca aaaaacctat ggcgggtgt catggccttt tgggcccgg ccctcgctcg 6000
ttcagcact ttcgctggat ttcgctggat ttcgctggat ttcgctggat ttcgctggat 6060
gcggatctca aaaaacctat ggcgggtgt catggccttt tgggcccgg ccctcgctcg 6120
tgggctgagc tggctgacg ctctctctga gtttaacgt ategcctgct cggattcga 6180
ggcagcgtc ctacatcgcc tcttggagc gttctctctga ggcggactct ggggtgctgaa 6240
atagaagca aagcagacgc caaactgcga tcagcattgc gcaataaata tatattttatt 6300
ttcattatc cttgctgtttg gtttttttggt gaagctgata ggcgtgtaag cccgtcctctg 6360
gtgcacgtc agtcacattc gtctgatgga gctagatgtag accagcagcc gacacccgct 6420
aaccccgct gacgcccct gacgcccct tctgtctccc gcattccgct taccagcaac 6480
tgtgacgctc tccgggtgct ccagtttctga cgggttttca cggctcctac cgaaacggct 6540
gagacgaaag ggccctgtga tgcgcattat tttatagtt atatctctga taataatggt 6600
tctttagacg ccagttttgga ctttttcccc ccgaattcgg gaaaccccta tttttttatt 6660
tttcataaca ccaattcatg ctctcagcct ctgagcccaaa tgaactcttg catatgctca 6720
ataatagttg aaaagaaaaga gtaatgatcc tcaacatttc cgtggcgccc tttactcctt 6780
cttgcgctga tttgctctct cttgctctctgcc caccagaaaa acgctggtga aaggaaaaga 6840
gtgctgagat cagttttcgc ccagcccttt tttcttcattg atagcccttta taataatgtct 6900
gctttgctg ccagtttttgc cctagttttgc cggattcgcc gacacccgct 7020
aacactatgt ccaggtgtgc gtcattcattgc ttcacccagca acataaccgc cagcagttttc 7080
tggtgcatcga gcgtgtagat gcctcgtgac ataggtgata acactgcggtc 7140
caacctccct ctgacgagca ctcgggtgctt acgctgttgctcc gtttattctgt cttgataattc 7200
gggggggct ctgctgangcc ggggtggctg ccggcctttcg cgtggtgcgtc aaacagcagc 7260
cgacgagcg cagcagcctg ttcgctgggtca aatggccaaa cagttggcgca aactatatcc 7320
tggacgcctt ccacccctcc gcgcctccc cttgctgctg tttttttattt cttggataac 7380
agtggcaagc ccacctccct gcggctggct cccggtgtgg tttttttattt cttgataac 7440
tggagcggct gcagctgattt ctctgccagc ccggggccagc atggtagacc 7500
cttcgtgcct gttctcttcc atcactggtg gcggcctggtc gacacccgct 7560
acagcagtcg aggctaggcc ctccactgta taactaaatccc aacagtttttta 7620
ccatatttc tgctagtttg attttttttcc ttttttttttta ataagaaaagcc taataggttga 7680
agttctcttt cttccacact gcctttaattt tttttatttt ccaccagcctt ggtgtagatt 7740
gttcggcccc gcagaaaaag ccacccctct tttttttattt ccgcctctaag 7800
tgcactgcct ccagctgttc ccagctttccaa aacccctctg acaggctggcg cggatatctg 7860
gcgcacactt ctttttcgga ccagaactgg gccgctccat acactgttgctcc 7920
tccctcattg tagctgtagt taccaggccc ctttccagcct ctctctctctgc cggctatattc 7980
ccccggtcct gcacccctgc tagctaggcc tgcgtgctgct gcagtttattt cgtgttctcc 8040
cggggtggct ccacsectcc ccggctggctt ccgcctctgct cgcggggcggc 8100
ttcggtcaca gaccctgctt ggggagcaga gccctcgagc gcagtgtcgcgact gctctggggtg 8160
taggattag ccagggacta gctctctctct ggcgacgcgtgtcgatc aaggggaaaag cgggtggttc 8220
cgggctggtgc ggacaccaag acctttctcc gccggcggcctt ccagctttcgt cttgctgctc 8280
ccacctatat gccgttttgg cagttgggttgc aggctgggctc tggacttggt tgggttattt 8340
agggggggggc agctcattggc aaacaccccc caacggcgccctttctctgt cttggtgccct 8400
ttgctgctgcc tttgctgacg gactttaaatc 8435
gtcgcgagct cggagagatct cccgatccct tATggtgac tcTcagtaca ATctgcTctg 60
atgccgctata gtaagccgac tatcgtctcc tgtcttggtg gttgagggct gttgaggtag 120
gcgcagca aaaaagctct acaacacaaggg aagtagtgcac ccgaaatcgg atgaaagactc 180
tgctaggct tgccgttcttc gcgcgttcttc gcgcgcgtac gcgcagatat aagcgcgtgac 240
attggatt gattagatg taaagaacct ccaattaacgg cttcattagc gcacatattf cattagccat 300
atccgagat cccgcttctaca taactccacgg ttaatggccc gccctggtcag cgcgcaacgc 360
accccccgcg atcagcatca aataagctgt aagttcccttc atgaacgcgca atagggactt 420
tagcattgac ctaatgggtg gatctatctg gcctaaaacgc ccccttgccc gcacatccag 480
tgatcaacag gcaagagcgc acctccatctg actcctctcc gccgctacatg cgcctgccc 540
attgtaccac atgcagcagt ctgcgcggtt gcctgcgcgttt gcgttctctgc gcagcgcagg 600
attgcctac atcgtgcttt gggagacatct caagccggtg ctaagcgcg 660
ttggatacag gcgggattccc agtcgctccg ccaattgaat ctaagggagtt ttggtttggc 720
acccaaacca cgggagccttc cccaaatcgt gcacacatcc ccccctcttt aagcacaatgg 780
ggcggtagcc tgtcagccgct gggcttacta taaacgcgcgc gtttggctgt cttcgcccttt 840
tgctgtgaag caccagatcc gccgtggagg cctctctgtct aacgtggggag cccattctgg 900
aacgctctcg aaagctgcgg tttgtgcttt cagctgtgt ccgtctccct gttggtctggc 960
tttgtgtca acagatcctg ctggcttccc tattgtgagt aagcagctt tggggtttg 1020
gccggaacag gcggctgagc tggacagagc aacgccaggg cggagagagct ctccttcggc 1080
gggtctgtga agcgccgcatc gcgaaggggg cgggagcgcc aggctggtgt aacgctcaga 1140
tttgtcctgg gcagaggtagg agggagagag actggttgcaga cccgggtctt cttgcgctgg 1200
gggagtttaa atccgcaaatg ggtgctggca gggggaggag gggggaggag aaaaaatatta 1260
aattgaca ctaagatcttc cagctctcgt gcctttgctgct gcctttgctgct gcctttgctgct 1320
ttgatcaacac tggcagagct cgcagacagt ccgtctgcttg cagctctgcttg cagctctgcttg 1380
ccagcctggag cacgcttttg tccattatctc tggccta atcctagcagc cgccttcacag 1440
aattggagac cagcctttg ccggctgctg gacgaggttt cttcgcagaa ggtagcctg 1500
aagcgaacac aattggagac ctttgcagaa ggtagcctg ggtgctttg ccggctgctg 1560
agggcattg gggagagagc attataaattta taatataaatc ggcgctgctg cggcttggctg 1620
gcgagcctcc cggccagcag cggcagagct ccggccagcag cggcagagct cggcagagct 1680
gggtctgctg cttcgcagaa ggtagcctg gcgtcaagct gcgtcaagct gcgtcaagct 1740
agctgctgg gtaagccgac atcctagcagc cggcagagct ccggccagcag cggcagagct 1800
ttcgagggcta ttgcacgcc cgccttgcag cgccttgcag cgccttgcag cgccttgcag 1860
tctccggcag atcctgctgg gtggcagtctta tctctacagct cggcagagct ccggccagcag 1920
tggctgtgct ccggcagagct ccggcagagct ccggcagagct ccggcagagct ccggcagagct 1980
aattggagac cagcctttg cttcgcagaa ggtagcctg ccggctgctg ccggctgctg 2040
aattggagac cagcctttg cttcgcagaa ggtagcctg ccggctgctg ccggctgctg 2100
aattatatga attagattaa tgtgcaattt tgtggaattg ggtaacata 2160
acaaattggc ttcgtgtatat aaaaaatttc ataattgatag taggggcttc ggttagtta 2220
agatatatttt ttcgtgtact ttctatatgt aataagttta ggccggataa ttcaacatctta 2280
tcggtttcaag ccaccctccac aacccecgag ggcccgacac ggcccgaaag aatacgaagaa 2340
gaaaagtagg agaagagacgc agacagatcc attccagttag tgaacgagaa tcgaacgtcg 2400
gcccaacttc tgcagcaaaactagctatt catccacaat ttttaaaagaa aaggaggggt 2460
tggggcttac agtgcagccg aagaagatgt agacataataa gcacacagaca taccacactaa 2520
agattacaa acaacaaatca caaaatctca aatattctgg ggtttactaca ggacagcag 2580
agatccagtt tgtttaattta aaggtcgaag gcctcccgcc cocggttttgg ggcctcccg 2640
cggaggcgcct cctcctcagct gcgcgcctcg ccaagtcgggi gaaagcgctc 2700
cgtatccttc gcgtccggacag ctgcagacag casccgctgtg ctcaaacacag tggctcctgg 2760
acacccggakt ctcacgagag gactattttgg gaggagactt ggggtcgtctt aagggactgg 2820
tttttcttctc aagagaacggc acacggcagc aggaaactgc ctctcctggc gattcctgacg 2880
agggcatcct cgtaaggccggt gaaaaagcagat ttatatataa ggcggccggt gcgttgagag 2940
agcttgctgcc gcgcagcccg ggtgggtttgt ggcctgtgatc cggctgtacg 3000
gtcactttgg gattcggggt ctggcggcttt gcggccggcgc ctggctgagcggccttg 3060
cgttgagcagcg gagcgcttggt gacagacccg caaaggtgcag cgtctgggtgc 3120
gtgcgctagc aactggggttg gggggggcgc ccaaaatagg cggctgttcc cgacttctga 3180
agtggacagcg ccttgaaagag gcgtggctag gcgctgt ggcccggagcgg aaaagggcag 3240
ggcggacagcc caagaagtttgg tgggcgcttc gctaattgtag gcagagttctttctcag 3300
gatggccggt gcgcctcattgg gggggcgcttg cgggtggttc ggtggagacag 3360
ggtgtttcgc tctgggtgcgc gggggggcgc ctatctgggt gcgctgtgacgc 3420
aacttttggga ggcgcgcgtgct cggctgtgct gcagaacctgc cggctgttgc gttataactg 3480
cggggggttgg cacccggcgtgc gtggcgttgct ctgcggtgtag gcctggccggcgg 3540
gttcggggtt agggtgagtg ctcgtaacct gcggccggcgc ggcaccctggt gcgctgtgcgg 3600
gataaaaggg gcgtctgttt cttttggctgg ggggttgagcgc cagagttttg 3660
agctgctgcc ggctgggttg cggctgttctgc ggtggagagcag ctgcttttgg 3720
caacctttgaa actagtactc ttttgggtcct tttgtatttt ctggctgtag actagtaagg 3780
ctttggcaggt tcaaatcatag aaaaattaccg ggcagcttttt gcgctttttgc 3840
ttggcagcgtgc tcgtggctgc gcggccaggtc ggccaatcag ggcacgtgctg ggtggctttg 3900
ctgcggagtgc gcgcacacac cccaaggaggg ccaccggcctgc ttctcctcgt gcgaacgagc 3960
gacgcggcc gcagcagtgac caacaagcat gcacggtctag gcgctggtgc ggcggtccagc 4020
cgccttttacc gcgcaccata ccgggggggctt ccgttgctact gcgctgtgacct gcgagctagg 4080
cgttcggttag gcaagagagta tagcgcctgt gcgggtggtat ccaacaccat gtgctgtggt 4140
gtcgacagtgc aatagctgtgc agctgttctg gcgcgtgttg ggtggccctct gcggctgttg 4200
gggttgtggc cccagctgcaag cgctctacgcc gcggccgttg ccgctgtgatt gcgtggcctg 4260
cagcgggccc acgtgtagtgc tcgtgagccaa gaaagggtctg caaagagatcc ttacgctgca 4320
aaagaagcta ccgatctccct aaaaaatcctgt catcaggttgc agcaagacgc agtacccagg 4380
cttccagagg agtacacctt tcgtgacctcc ctatgcctcca cggcgctgctc aagatgacga 4440
tttagacagc cccagatcatt ccatcacaatt ggcagagagct gcaatcggacag tgcattggtt
ctctctgtgtt agacacagac tgacgctgtggg agctctcttgga ctactaggg aaccccagcgc
trtagctca ataagaagttg cctggtggtgc tccagttgagt tgcgtcggcct tggtagtggtg
acttgggtta ctagagacct cccgagacctct tttagctagtt gttgaaaatacttctactaggg
ccggttttaa cccgagctagct cggctgatgc tgcggctgatttt gttcgcacggtc tacaaggttg
ctgaaagtgg acatatcagc gctatgcctct gattagctttg tgcgtcggcct tggtagtggtg
tggtggcgag ggcgttggtt gtagaaggag acggagagagt gcggttttattgtt cttgtcggcct
tggtggcgag ggcgttggtt gtagaaggag acggagagagt gcggttttattgtt cttgtcggcct
ggcggttttattgtt cttgtcggcct tggtagtggtg tgcgtcggcct tggtagtggtg
ggggttttttc gcgagctgtt caattggtta aaaaatgtc gtagattaca aaaaatgtc
gcggcaattt ttcggtggaattttgc ggtggcgttgctt gcgtgggaattttgc ggtggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggggttttttc gcgagctgtt caattggtta aaaaatgtc gtagattaca aaaaatgtc
gcggcaattt ttcggtggaattttgc ggtggcgttgctt gcgtgggaattttgc ggtggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggggttttttc gcgagctgtt caattggtta aaaaatgtc gtagattaca aaaaatgtc
gcggcaattt ttcggtggaattttgc ggtggcgttgctt gcgtgggaattttgc ggtggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggggttttttc gcgagctgtt caattggtta aaaaatgtc gtagattaca aaaaatgtc
gcggcaattt ttcggtggaattttgc ggtggcgttgctt gcgtgggaattttgc ggtggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggggttttttc gcgagctgtt caattggtta aaaaatgtc gtagattaca aaaaatgtc
gcggcaattt ttcggtggaattttgc ggtggcgttgctt gcgtgggaattttgc ggtggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggggttttttc gcgagctgtt caattggtta aaaaatgtc gtagattaca aaaaatgtc
gcggcaattt ttcggtggaattttgc ggtggcgttgctt gcgtgggaattttgc ggtggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggggttttttc gcgagctgtt caattggtta aaaaatgtc gtagattaca aaaaatgtc
gcggcaattt ttcggtggaattttgc ggtggcgttgctt gcgtgggaattttgc ggtggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggggttttttc gcgagctgtt caattggtta aaaaatgtc gtagattaca aaaaatgtc
gcggcaattt ttcggtggaattttgc ggtggcgttgctt gcgtgggaattttgc ggtggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
ggtagataatatg agatggagtt gcgggcggcg gctgctggtt tcagcggg gttggcgttgctt
cctgctgcc tccgctgctt ggcctgaggc agcgcttataa gtcctactaa aggggttact 9240
aatatttacttcc acctatgtcc acggataacg aggaaagaat cttgagagaa aagggccaga 9300
aaagggcgaa aacgctaaaa aagcgctggt ttgctggttt ttcctatgaac tcggccccc 9360
tgcggacgt cacacaaact cagctgctcag tcggctggtt cagaaaccaca caggaatata 9420
aagataccag cggtttcccc ctggagacgtg cctcgctgctc ttcctctggtt cagaccccg 9480
gtcctacaag taccctggcc cttctcttccc ttcgggngaag cttgctgctc ctcatactcc 9540
aagctctagg tacctctgtt cgtctgtagg ctgctctgcc aacctgggct gtctgcaaga 9600
aacccccctg cagccgaccg cttgctgccc atcctgttaccttgtctctt gcgagcaacc 9660
gttaagacac gacattcggtg caacctgcag agacacggtt aacagatgta gcaggecgag 9720
gtattggcc gtcgctcagg tccctctgcaac gttgctgcct aacctacggc aacactagaa 9780
aacagtaatt gtattctcgg cttgctgctga cggcattctc ttcggaaaaa gatggtgtag 9840
tctcttgatg gcgaaagacc caacccctcg tagccgtgtt ttttttgttt ggacggacga 9900
gattaacgcg agaaaaaagc gatcctacga agatcctttt atccttttata cggggtctga 9960
cctgcttagg aagaaagacc cactgtaagg gattttctgtc atgalattttt caaaaagat 10020
cctcactctag acctcttttta atttttttga atttttttta cacatctctaa gttatataga 10080
gtattacggtgt tctgcattctt ccctgtttctg tagataacttta cgatagccga 10140
ttttttttctc tctacatctctgt ttgctgctag tcttcgccca aacgcctggtt cagacggcag 10200
ggctgcatc cgtggctgcc aagcttgctag tagataactta cggcctgga 10260
agattttactc gaaataaccc agggagccgg aagggccagg cgccagatgt gtctgcaacc 10320
atatcttattt tcctgctgctca cgtctgctgctc aacccgctgg tctctctctt gttgctgctc 10380
agtattagtgt ttgccgacagc ttcgctgtcc atgccgctgtg acctgctcgtc 10440
gttgtcgct gcctctctctag gtcggccttag ttgctgctca gttgagtgaat tcggagcaca 10500
cctttttttgtt cctccatttt ccctgtctct ccctgtcttc gatagagtgaat ctcctgctc 10560
ggccaggctt ttcctctcttt ggttactgctg atagctgctct ccctgctcgtc 10620
acccgctctg gcagttctctg cgggtgtgttt gtagctgctc gcggctggtt cgcacctgt 10680
tgccccctg gtattttttcgt gtagacgtgg gatttcttc gacccggactt gcttgggtct 10740
cgcgatcttta aacgcgtcttc tcatcgggaa aacgccgtcg agggccagaaaac ttcgaattg 10800
cctacgcgct tcagacgatc gtcgatctga accactctgt gcaccccaact gatcttcacgc 10860
tctattttct ctacgatcag tttctctttc gacaaaaacc ggaagggaaagttt gagcagcaga 10920
aaagggcaga ggcagccgac ggaatctttg aacagactcct caaattttttt ttccacattt 10980
ttgaacacatt tacccggttt atgtgtctac gacgaggata atatattttaa ctttcttttt 11040
aataaagcaca atagggggttc cgccgacatct tccctgagaaag gttgcaatctg ac 11092

<210> SEQ ID NO 5
<211> LENGTH: 10401
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURES:
<223> OTHER INFORMATION: Constructed plasmid vector
<400> SEQUENCE: 5

gtctggaggat eggsagatct cccagatccct tttggtgcaac ttcctatgaca actctctctg 60
atgcggctac gtaaagcgat tatgctgctc ttcctctggtt gttgagggct gcttgaggtg 120
gctgagcac aataaagcata acacaaggg caggtgtccag cgacaattcg agagacagt 180
tgcctaggt tagcggtttt gcgcgtttcc gcggagtacg ggccagatac agcggtggac 240
attgtatatt gcacgttaga taatagtaatat caattaagg ggctcagtag atagcagcatat 300
atatgaggt ggcggttaa taactcaggg ttaaaggcc ggctggtgctt cgcggcagacg 360
accceccgcc atacagccta ataataagct atgttcccat atgaagcggca aataagcaatt 420
tctattgaag ctcaatgggt gtagtattac gtttaacctgc cccatgtgcggtcatacacga 480
tgtatcatac gcctagtaac cccccctatgg agcctaataa ggcgtaaatgg ggcggcctggc 540
attactgaca gtagctgacact tttgtggaata tttcttcata gagtagcactat cagcttatag 600
tgacgtcat tacatcttggt ctagcgttcaag gcgcgctttt ggaattgcctggt 660
ttgactaag aacggattccg cagttccacc cccatgagct cctagggagtt ggatttggc 720
acccaaattca aacgggacattt cttaaatgcg ttaacaactc cgcggccttg aggcaaatag 780
gcggtacctg tgtaaggtgga gacggctcatata cttactgagcg gccggctcttg tcaaggtgtctt 840
cctggtgtag accaggtgctgg acctgggaggt ctcttggctt aacatggaagc cccagccttg 900
aagcctcaaat aagcggcttc cctagtcttg aataagtgtgg cgtgccctgcct ggttggtgc 960	
ttcttgaact aagagccctt cgaacccct tgtctgtagct gccaatatcg ggaatatctg tagcggggc 1020
gcggcgacac cggcgtgaaaga ccaacgagac gtccttccga cgcggggttc 1080
ggttggctga agcgtagcacc gcaagggcgg ggaggagccg agggtagtgt cggcggatata 1140
ttttaagtct caggagctttag aaggagagatc tggggctacg gacgtctagat attaacggggg 1200
ggagataattg atgcaggtg ggaaacattg gttggagaag cggggaaaaacc aaaaaaatata 1260
aatataaaac aatgataggc cggcagggcc aacgtagaagc atctggcggg cctcggagctc 1320
tgtagaaca atgcgagagcg tggagacaaa tttaagcgcag ccgacatca cggccttg 1380
cgggtgaaca agaactaggata ctaattatata atacactaagc aacccctcag cgggtgcatc 1440
aagggataga gtaaaaagac accaagaagat ctttagacac ggtagaggg gcgaagacac 1500
aagagaagac cccgcaagcc caagggggcg gtcctctcag gcggcgattg agagatagtg 1560
agggcaattt gcggagcttg aatatataatt ttaaaaattg taaaaatggag cggcggtgctg 1620
gtagccga cccaggggaa gagaggagtg gtcggagagc aaaaaaaaaagc agttgggataa 1680
ggagcttttgtc ctctgggttct ctggggaggg gcggagacgc ctagggggcg cggcggaatg 1740
aagcggagaag gcggagcgca aacagttttg tgtgtgataat gcggagcagca gaaacatttg 1800
cgggggcta gcggagggca acacatctcg tggcgactca cgtgctgggg ggtcagacag 1860
cgccgacca gatctgtggc tgtggaaggt taataactcg cccggtgggt 1920
tgggttgctct cttggaacagtt tttctgccgg tctcctttctg cggtgctggag 1980
aatataatcc tggagcagat ctcggacac cctgctggagg gtagatggagt 2040
aacacattac cgaattttact acacatcttt atggaagatc cggcagatac cggcggaggt 2100
aattgagaag aatataatgga ctaggataac cggcagatac cggcggaggt 2160
aacaatttgc tgcggatata aaaaatttct atataattatc ataggggttt gttttaggtta 2220
agatagtttt tggatcgtcct tttttataggg aataagagttg gcgaggataa cggcggatgag 2280
tggttggac gggagggcag gccggcgagtc cggcggaggt 2340
gaaagggagg agacagacag agacagactc atccgattgg cgaaggagatc gagcggtgct 2400
gcgcacaattt ctcagacaaaa tgccgagatt cttcccaact ttaaaagaaa aaggggagtt 2460
tgagggggttc gtcggggaggg aaaaagatgt agacataata gcaacagaca tacaactaa 2520
cgcggagttt agtggcataag gctggaagca cggacaagtgt aatcttgcca aatctgtgat 4980
cgccaaag ttccgacgct cctgtacctc ggatgaagaa cagtttttct cttccaccccc 5040
tgcaaccccc aaccccccct cttggtaagga atttgataa aagtttttgc ataatccaac 5100
ttctgaattt aaaaatgttg aagatgtagc ttggtatcctt aactatgttg cttcttttac 5160
gataatgtaaatcgctt cttctgtccc attACTGATTG ATGGCGCCTTCTGACGCT 5220
cggttctttc ttgctgtatt aatctgggtt gctgtctcctt ttgagggagt tgggtgcccgt 5280
tgctcagccaa cggggcgtgag ttgctgaattg gttgctgtac gccaaaccccc cttgctgggg 5340
cattgcaacc acgtgcagcc tctttccccg gcactgcgtct tctccctccc actggtcacc 5400
ggcaagactc atogccgctc gccgctctgct cttgctgacca gggggttcggc gttgtggcgc 5460
tgcacatctc gttggtgttg cgggggatca aatgtccttct cttgctgctc gcctgctgtc 5520
tgcacactgc ggacgctctc cttggttctt cgctgttttc ctggctgcct cctggctgtc 5580
gggcttcctc ctccgctggc tcctgctggttc tcctgctggttc tcctgctggttc 5640
cctccagac caggatgata ctctttccccgc cggctccccc ctctgatattc gttgacctg 5700
agacgcagaa aaacctgagc caatcacaca tagctactcag ggcagacaca aatgtgattg 5760
tgctgtgtga gaagccaaac aggggagagc gttgagggttc cagtcacaca ctcagggtac 5820
ctttaagcagct aagatctagt gatgtagctc aaccttttac aagaggtcttg 5880
agggctggag cggcataattc acctcacaag aagaaagatg cttgctgatac ttgtggctcagta 5940
ccacacagaa ggtgctctcc cttggtctgc gcggtgagc gatgctggag 6000
tctcagaccc ttggcttttt gctacaggtaa gctagcagatt gctagcagatt 6060
acgcaatcag aagggaagac cccgcttggtt aaacccttggt aaggtcagatg gtggctgatga 6120
ccccgagaga gaagatttagc aaggggtttt gtcagcagag tccagatctt cccattctttt 6180
cggctgctgg ccctgctgatg ttcctgttttc cccgttttttc ggcgtctcttc 6240
gctgctgtgc tannctctgttcc caaccactgtt cccgctctca cctggcctggc 6300
ccagctgtgc gttcagcgtgc tggcgtgtgtc cttgctgtgc tggcctggcctc cttgctgcttc 6360
atgacgagctgc cttgttgtct tggctgtgtgc tggcctgttc cttgctgcttc cttgctgcttc 6420
tagccccctc ccccgccctgg cctttctcttc tccctgtgctg cctcgctgctg cctcgctgctg 6480
aagctggtcc cccgcttttt gttttttttct aatgcatuatgt gcatggcacg cttgctgctg 6540
gttggtccc tcctactcgtt ggggggtggg ggggggcagc cggagtggg gggagtggg 6600
aagcacagttgt cggaggctgc ggggggtctct ggctgtgtat ggggtctctt gggggcgtag 6660
ccgctgggg gcctgctggttt tatacccaag ccgctgtttt cggcgagttaa aagggcgggg 6720
cttggctggtg ttcctgtttgc gctacagctc cctgtctttt ccgctgtttt ccgctgtttt 6780
cccgttttttt cccgctgctg ccgctgctg ccgctgctg ccgctgctg ccgctgctg 6840
ggggtctccc cttaggcgtc cgaagtttagt ctttacgagcc cttggaggcgg cttggaggcgg 6900
atgggtgtga ttgcgtgaca cggctgctgc cggctgtttg cgggtttctg cggcgctttt 6960
cgggtggttc cagctctctct ccctgctgctc ccgctgctgctc ccgctgctgctc ccgctgctgctc 7020
ctatcaggtc ctttctttttc tttgtaacat gatgctggttt cttgctgctc cttgctgctc 7080
aagaggttgtg gttgcgtgata cgggctgtttt ccgctgctgc cggctgctgc cggctgctgc 7140
aggggtttgg cggctgctgctc ccgctgctgc ccgctgctgc ccgctgctgc cggctgctgc 7200
cccggcgcgg gcggcgcgg gcggcgcgg gcggcgcgg gcggcgcgg gcggcgcgg 7260
catcgaatg tcaatagtcc aacctatgct cccgcccctc aacctcagca tccggccacct 7320
aacctccgcc agtctgcgcc attctcgcgc ccatcctgtg acaatattt tattatatgc 7380
agaggcagag gcgctgctgg cctctgtgat attcagagaa tagtgagagg gtgttttttcg 7440
agctctgggcc ttgctgccaa agctgccggg agtcttgata tcctatctccg gatctgta 7500
gcagctgtggt tcaataatac atcgtgctag taatacggca tagtataata cgaacaagggt 7560
agaggcacta ccagcctgac cttgaccect ggcgttccgg tgcgtcagcg gcggccgctc 7620
gccaggagcg tcgagttctcg gacgacccgg ctctggatct ccgcggacgct cgtggagagg 7680
gactctggcc gtcggctgcc ggagagcagtg acctgttgca tccagcggtg ccagggacag 7740
gtcggctgcc gacaacccct gcgcctgcttg ttggtgtcgcg gcctggaaga gtcgtcagcgc 7800
gagtctgcgg cgacggcctc cgcaacttct ccggagaccc ccggccgggc c taggingcag 7860
atcgagggac agcggcgagg gcggagactc gcctggtcgag acggtgtcag gcacgctgctg 7920
cactctgctg cggcggcag cgcgttcgac gccggtcagag atctggcttc cccggtccgc 7980
tctctgagaa ggttggcgtt cggaggcttg ttcgugagag gcggtgcttg cattctcgcg 8040
cgcggggact atcagtcctga ttgatcgtgac ccaccccaact ctgttattgc agcgtatata 8100
gggtacaaat aagaacatcg ctagcacaat ttcacaaagt caagctttaatt ttctactgct 8160
tttgctggttg gttcggccaa atctactaat gtttatatact ctcgagtggact 8220
ttgtcagac atcgagactca tagctgttttc cttgagtaaa ttgttatcgcg 8280
cctcactaa ctacccagat ccggagccga acogatcattgc gcctgacgct 8340
tgtggtctgct aactcttctc aagttcgggt cgctgactgct cggccttctca gtcggggac 9040
cgtggtgcc gcgtggtcctt actagtcgag ccacggtgcgc ggagagcaggt ttgctgtcatt 9060
ggggcgtctct cgccttcctc gcctcactgac ctgctctgctc gcggtgcttcg gctgtcgcgc 9120
gggtgatatcg ctctctgcgc gcggctgtgagg acctgtgtgcg ctttctcctct 8820
tccggaggcg ccggctgttgc tcagtttcgag tcgtggagt ttgctgtgcct ccggagcggc 8880
gtcggctgctc agtcggcgag tcgtgctgatg tcagggcgag ggtctggtgg gcctgacgcg 9160
ttgaggtagct gtttggcgtg ttcctcctgc acacgtctag caacgctgct aaggtccgcca 9060
tggtgagcata ctactacgctg ctaatctttg tcgatcaggt gttctgagag 9120
ccgagttcct cgggagccag cgggagacgct cgggagacgg gcgcgggctc ttaacctggc 9180
agcgggtgcgg tttttggcgt cagggcgcag attacgcagca gaaaaatgtag tgcgccagag 9240
gatccctggt gctctctcggc ggtgctgtgc gttgctgcgtc cagagagctc ccgtgagctg 9300
ataacctgctg ttagctttct gccagagctc ccggctgggat ctcgctagct gcgtgacagg 9360
agttttaaat caactaaag tattagggatt taggedtgcact ctagtgctta ccaatctgctt 9420
atcgcggag ccctctctgt gcgtgtcagct cgcgcgctgc ctgcagctgg 9480
cctgcgtgtg atacctcttgg gacgcgtcctc ggtcagctgt ctcgctacgtgacetgctcag 9540
atcaggagc aacccagcct cgggctgtca gattttatcc acataaaacc gcccggcgcg 9600
agggccggac gcagaagttgg ttcctgcaact ttatcacgtc ctatccccag ttataattgt 9660
gcgtccttg cggcagacac ctcaagctat tacggctat gctgtatctg 10140
cccccttcg cccgaaacgt cccgaaact ctcagagttc tacgatcag cctgatgtaa 10200
gagccacag gagccacag gagccacag gagccacag gagccacag 10260
ttttctctctt ctaattatat tgaagcattt atcaggttta tggctcttatt 10320
agcggatata tatttgaatt tatttgcata aataaaaaa taggggttcc ggcgtaacct 10380
cccgccaaag tgcacactga c 10401

<210> SEQ ID NO 6
<211> LENGTH: 9903
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Constructed plasmid vector

<400> SEQUENCE: 6

ATGCGCGGA GAGATGCAG TACGGCACCA TATCGCTCTG 60
ATGCGCGGA GAGATGCAG TACGGCACCA TATCGCTCTG 120
GCGCGGGG ATATGCTCGG CTACGGCAGG CTACGGCAGG 180
TGGTATGGT TAGGCTCGG GCGGCGAG TACGGCAGG 240
ATTGATAGA GAGATTGCA ATATGCTCGG CTACGGCAGG 300
ATATGCTCGG CTACGGCAGG CTACGGCAGG CTACGGCAGG 360
ACGTATGA GAGATGCCA GCATATGCAC GCATATGCAC 420
TGTACTAC GAGATGCCA GCATATGCAC GCATATGCAC 480
ATTGATAGA GAGATGCCA GCATATGCAC GCATATGCAC 540
ATTGATAGA GAGATGCCA GCATATGCAC GCATATGCAC 600
ATGCGCGGA GAGATGCAG TACGGCACCA TATCGCTCTG 660
ATGCGCGGA GAGATGCAG TACGGCACCA TATCGCTCTG 720
ACGTATGA GAGATGCCA GCATATGCAC GCATATGCAC 780
TGGTATGGT TAGGCTCGG GCGGCGAG TACGGCAGG 840
CTTGGTATCG GAGATGCAG TACGGCACCA TATCGCTCTG 900
AACTGAATG TACGGCAGG CTACGGCAGG CTACGGCAGG 960
TCTGCTTAC GAGATGCAG TACGGCAGG CTACGGCAGG 1020
GCGCGCGGA GAGATGCAG TACGGCACCA TATCGCTCTG 1080
GCGCGCGGA GAGATGCAG TACGGCACCA TATCGCTCTG 1140
TCTGCTTAC GAGATGCAG TACGGCACCA TATCGCTCTG 1200
GGCGAGATG TACGGCAGG CTACGGCAGG CTACGGCAGG 1260
-continued

```
aattaaacca ttagttttag ggcaagcagg agctagacag atcgcagtt aatctctggcc  1320
ttgcataaac atcagacggc ttgagccaa tcagttcgtc gtcgctgaca cttaatatct gcccctgct  1380
cagctgct aagaaccttg ctctatattcat atcagcttgac aacccctctat tattcgtcctc  1440
aagaagataca gacacactga aaacaggaag ccagccgctg aatagcataa gacagaaagaa  1500
aaagtaaac caaagcagcc caagggcgcg aggctgat ccgagcagag gagagatattgg  1560
agggcactaat gggaagacag atatatgact atatatatatcg agctccagtt  1620
gtgcaacacc ccaagagcag gagaagatttg gtgcagagag aaaaagagac agtgggaaa  1680
ggagctcttgg ttctggtggtg ctgggggagcc gcagaaacgc ctatgggctc agcgccacttg  1740
agcctgacgg tagcagcagc acaattatatg ctctagatag ttgcagcagc gaacaattgg  1800
cgagggctca tggagccgct ctgcagcactg tgcagctctga cagcttgctac ccgcaagagcag  1860
ttcagagaa gaaacctgct ctgccgaaac ctcaaatatttct cagagcttct cagtctggagtt  1920
tgggctgtct cagttcagac ccttctggttg ctctgccttctctagagtc aggctgtcagg  1980
aattacatcc ttggacagat ttggaattc acagcatctca tggagttcagc tggagttcagc  2040
aacactacca caagactattc atacaatatttg ccgaaaccc gcaagaaagaa  2100
atagacacag aatattttgga attagatatg ttggccagtt ttggaatttg ggtaattaca  2160
acoacctggcc ttcggtatat aatataatctc atagattctt ggttagttt ggttagttt  2220
agatagttgt ttcgtctact tctctatagtt aataaggtta ggccagggta ttctaccatttctc  2280
tctgtagaaga cccagcctcgc aacccgaggg gcgccgacag gcgagctcagc aatagacagac  2340
agagggcgcgc aggagaggag agcagcatctc atcagtattt cggagcagctc gcgcctccctc  2400
gcgcacacc tggcagcaagca tggcagtttt cattccacact tttataagaa gagggagagg  2460
tggggctctcc aagcctcagggg aaaaaagaggt agacataaaa gcaacacagca tacaataa  2520
agacactaca acaaaatctta caaaatctct aaattttgcgg gttttacacag cggacacacag  2580
agatccgcttg cttgttaattt cagtggcagc ggcctccgctcg ccgggtggcg ggcctgccgc  2640
cgggcgcccc ctcctccgctcg ccgccggccct cggagcgcgg gggggttggc  2700
tccgcaacc ggcgcagccg cttcagacgg cttcagacgg cttcagacgg cttcagacgg  2760
aaccctggag ttcgttttag taactggtcg gaagggacttt cggcgagacag agcgacgcgcg  2820
tttttttttttt ggggacacagc cgggaggggg ggaattagtt gttttccgctc gattttctggc  2880
aggcctttctct ctgagcggcgg gaaagcggat gattatatag gcccggcgcct cctgtttcggc  2940
agctagttcct gcgctcagcg gatttggggg gcgtttttttt gttttgggcttc gccggttgac  3000
gtttatgttt cggcgtgctg tttgtttttt ggcgttcgtg ccgggggtgctt  3060
cgggagggcgc gggagcggg gggggttcgt gttttcgtgc cggggtgctt  3120
gttctgttata cttgtgggggtt gggggttcgt gcggagccgc gcacaaaaag gggtggccatt  3180
tagagaacgct ttggagccac ggggtttggag gttttgagcag gctagtctgg  3240
gcgcaacagaa ccacactgctt taggtctttct gcataatgcgg gaaagcctcc atcgggttgct  3300
gatggctgg ggccacattt ggggacccctg actgtaagtt tggccctgtct ttggagacagctc  3360
gggttgtgtc ttcggtttttt gggggttcgt gcgggggtcct gcgtgggcag gttcggggct  3420
acccctggga ggcgctcgttt ctgggtgtgg gcgtttgtgtgc gttttgacgc gcacaaaaag  3480
cgggggggca ccacagctgc gttttggtttt ttttttctgc aggaagccgc gcggagcggcct  3540
gttccggcct cgggtctgtt ctgcagctgc gcagggcggc gcagggcttg ttgggagagg  3600
gataagctgg ggtcagtttt tttgtgtgcct ttttatgtac ctatctttctt aaaaagctggg  3660
```
-continued

tccattgcta ataaatgtag gaaattgcat cgcattgtct gtagtagtgc cattctatc

tgaggggtcg ggtggccgac gacaagcaggg gggaggattg ggaagaaca atggaaggggt
tctgggattgc gttggcttcattgctgtctg ggcggagaa aacgactgtgg ggcctctagg

gtagcttcctc cggcgccttc gtagggcgtctgg cggccgccttc tggccggctctc
ttcctgggtc tatggtcagctg tcctgggttcctg tggccggctctc
taccattagcc ttgctcagc cggcgccttc gactatttct tctgggcttgcctt
ttagtttcg gggccgccttc gggccgccttc cgggctggtgc gggccgccttc
tccattgcta attccagcctg cggccgcgac ggcgggcttc
tcgtgccggcttc ggtcctgttc ggcgggcttc
tccattgcta aatcagcgtg cggccgccttc
tccattgcta ccacctttc cattttctt aatcagcgtg cggccgccttc
tccattgcta aatcagcgtg cggccgccttc
tgtgtgcaacg aaccccccgt tcagccgccgc cgcgtgcgctt tattcgtgtaa cttatgtctt 8460
gagttcaccgc cggttaagct cgccttatcc ccccttgcccag cggccacatttg aacccagtctt 8520
agccacggcg aggtagtgagg ctctgtgaca gaggcccttga agtctggcgcca taatacggc 8580
tacacttagga gaacag tgttgggttcg gctgctgtcata agccagtccgc cttcggaaaaa 8640
agagttggata gtcctgtgact cggccacatttg aacccaccttgc tgaacgttgtgc tttttttgtt 9700
tgcagagcag agatctgcac cagaaaaaag gcctttcacaag aagatctccatc gcacccctttcgt 9760
acaggggctgt gcgtgctcgag gacaagacac tcacgttaag ggtatcctggct catgcagatctt 9820
tcacaagagtg tctctcacttc gttcttttttaa ttaaactttaaat ggaatttttaa attaatctcaca 9880
agtatatagc agtaaactcttg gctctgacagtt taccaatgct taataccttaga ggcacacttc 9940
tcagctacct gctctattcgc ttccatccata gttgctgcgtc tccagctctgtagat 9980
acgccttcgg aggctcttacc atctggccccgg agtggctggca tggatacggc agacccagcgc 10060
tcagctcgcctc cagattttatac agcataaaacag ccagccacgctc gagggcggaca gggccagaagtt 10120
ggtctgccgtc ctttacccggc cttccatccag ttttatatttg gttcggcgccag agtcagtcgc 10180
agatgtggcag cgtttaaagttttgcagcac gttgttgccag tttgtacaggat ctcgctgttgctg 10240
tcagcgcctgt gcgtgtcctgtgc ggccttcacttc cccacgtagtc aagggcgagtt 10300
acagatgtc ccatgtgtctt acagacaagcat gttgctgccttg ggtctgtctcagt gttgtgtgcag 10360
agaagtaatgt ggcccgcggttt gcctaccttc tgtatagttgc cggccactgc ctaacctccttt 10420
acgtctctgc acagctgagat gttgtttttaaat gtaacctgcag atgacactcag caagcctttcg 10480
tgagaattgt gttgagccggc acagagttgc tttgccgcgct ccagataacag ggataaacttc 10540
gccgacata gccagacctttt aaaaaggtcgca atcattggcag aacccgctttg ggggccccaaa 10600
cctcaacaga ttttttacgcct gtttagagcgtc aagtgctgtggt aacccctgtg cgcacccacc 10660
tgtgctttccag ttttttacgcct gccatgctggc ggtggccacac gcggactagcc 9720
aacgcctggca aaaaaaggtcg aaggccggcag cggaaatcgtt gaaactcgtcagctcctcccc 10780
ttttctctatttcgcagcagtt tattggtctca gttgctggtatg acatctggtaaaa 9840
tgatattgtac acctctgtttaa acatagctgtc ggcggcgcata ggtattgctcccatttttttgaa 9900
gac 9903

<210> SEQ ID NO 7
<211> LENGTH: 11586
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Constructed plasmid vector
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (3907) ..(3907)
<223> OTHER INFORMATION: n=ax, t, c or g
<400> SEQUENCE: 7

gtggcaggatc gggagatcc tccgatcgcctc tctctgaccctc tctctagtaca atctgctctg 60
agttgacgatt gtggcagctac ctcctggtcttg gttgactgcttg gcgtgttcctg 120
ggcgacgcac acatctgagt gcaggttggc ttttctgtctgc ttcgagatc 180
agtggtgtctgc ggtctgcttgc ggtgtgcaaatatggtgtcctgaaggtgctgcctg 240
attgactctgtgtaataagatatcaatcctggtgttgcctgtcttcgagatc 300
acagatgtc ccatgtgtctt acagacaagcat gttgctgccttg ggtctgtctcagt gttgtgtgcag 360

105
106
-continued
accecgccg accggcgtca atatacgctt atgttcccct atataaagcc atagggaccttt
420
tocattgacg tocggtggcg gagatattcgc gtaaactgca ccacttggtcgatgctcaaga
480
tgtgtcatg gcaagaacctc ccctctactg agtcaatagga agtgtaatttc gccgtcggcttg
540
aatgctgcgg atgtgacggct tctgtcggctc cggagctgtctt tctgtgctttcgc
600
tcggagctctg atacgtgtgt ggcaagtacctg aatggggctg gatagcgggt
660
tcgcaacctg aggatggtctc atgcgctccg tccctctgc agtgctgtctgcagctc
720
accacaatca cggagcaattct ccaaattgct gtaaactctg cgcctgctatg aagaaatagg
780
gctgtaggcg tctgctgtgg caggttcatata tgcacagcgcg gttttgctgtactgtggtct
840
ccttgttgatg acctgattcgt agcgctggag cctctttgtt ggctgggaaa cctactgtt
900
aacocctaat aaagacgtcg cggctgtcct caggtgctg tgcggctctg tgggtggatc
960
tgttgaaact agagactcctcg cagacccctcct ttgtaagttg gcacaatcctct ctgagggcctgg
1020
gcgcagacgc ggcagctgaa gcaacagggc gccagacgca aaccagagga gctcttcctc gcgagactc
1080
ggctgtggga agcgcgcgcc gcacagggcg agggggcgcg actgtgatgt ggtcagggcga aagccaaaaa
1140
tttttcgagc cggagctgtcc aagggagac aggggtgctca ggcgctgtcc atcagggcgg
1200
ggagacattg atcgcaaggct gaaaaattcg gtttaagggc aggggggaaag aaaaaattata
1260
aataaaaact tatagttgtcg cagacactggc gttcagacca cgtcctcag cctgcttctcg
1320
tgtagaaacctc atcagacgct actggagcccg gccttacaga gctcacaacgc ttcattcctg
1380
caggatagcta cagaagcttag cttcagattc tatacagcta cccatccctct tgggtgcctc
1440
aaagcagatg gtaaagaaaa accaagagagg ctttacacaa gatagatgag gcaagaaaaa
1500
aaagttgacgc cagcgagcag cagggccgct gctatgctct gacgctgtcc aaccaagcgg
1560
agggccacatt ggagagttgca attatatata tataaagtga tasaattcta accattgga
1620
tgataccaccc ccaagagatgg gaaagatggag tgcagagctc aaaaaagaag aagtggaatat
1680
gaggccgcttgct tccccggtggt cgttgacgcc gcgagacccgc ctatggcccgc gctgtcagtg
1740
aocctgtcagc tacaggagccg ccataatgttt tccgtgttagct tgcacagccgg aaccaattttcg
1800
ctggagggcc ttcggagcagg cagcactcttg tgtcagacctc cagtctgagg gcaccaagcac
1860
tccggagcaca aattctgggc tgtggaagaa taccaagcctc cctgcttgatg
1920	tggggtgtgt tgtggaaaaact catttgcgcc actgctgtgc tgtggaatgc tagttgaggt
1980
aataaatccc tggaacgatc tgtgatcctac agcacctgga tgtgaggtgga cagcaagaaatt
2040
aacatcata cctaatcaatatg cctcatctta ctctgaagact gccaaaccac gcacagaaag
2100
aatacgtgg aagatggggc atggtagata ctggtgggta tggatttacat
2160
aacataatgc tggtagtcttat aaaaatcttta atataagatct gcggatcttctg tggtagttta
2220
agatatgtt gttgctgtat tcccacgtat aatagagttt ggcagggata tttcactaat
2280
tgccttaga cccctctccccc aacccgaggg ggacccacgc ggcctcaagc aataaaaaag
2340
gaggggtagg agagagacag agaagacaatc actgcttttag tgcacagctg gcacacttgt
2400
gcgcacatcc cgtcgccagt ctcggactact tttaaaagaa aaggggggctt
2460
tgggctggtgc aaggcaggg ggaaagaggg atcagataa aacaagacac tacaagcaata
2520
agatcagatt tggtttaatta agggtggcag gcgcctggct cgggtttttg ggcctcggct
2580
cgggggccct cctctctacgc gcacgctggct ccaaggggctt aggagcttctc
2640
tctgatccttc cggccggacgc ctcagaggact ggcggcagtct gtcataagac tggcctttag
2700
actgtagtct caggggttaaa atgaaagata tggctcctctgc tgcacccaga ctctaataaaa
5160
gttgtggagct atatctagact ccacgcgccc ccactggtct ggtatatctgc agaacttcccgc
5220
cctctcctct ccccccoccc taaagcctac ggcggagcgt cggatgaaata aggccggtgt
5280
gctttgctct atatgctatt tccacccata ttcgcggctct tggccaatggt gagggccccgg
5340
aaactgggcc tgtctttttt gatgagcgct cctgagggttc tttcccccctct cgcacaagggg
5400
gctcaagcttg tgtgtgtagtt ctggtgggaac gcatcttcctctgggagcttc ttggaagccag
5460
acaacgtctgc taggcagcct ttgtaaggccag cggacacccoc cacccggygga caggygtgctc
5520	
tcggggcccc atgacagtctt ataagataca cttggaaaggg ccggcagaacc ccagtggccac
5580
gttgggtgaat ggtatggtagt gggaagagtct aatggtgctct ccctcaaggt attcacaagag
5640
gggctgaagg atggccacca gctaacccat cttgatggtt agctcttggg gctctgggtgct
5700
acactgctta ctatgtgttta gtgcaggttta aaaaaattctg aggcaccccg caccaagggg
5760
acgtgctttt ctttttctgg gcatgtggtgg ggtctcctccac ctcggccgcttg
5820
	ttacttttcc tggccctgtgg tgtctcctccg tcttcacgcc ccacccgcgtc aaccaaatct
5880
tgcacccggttgctgaagcc ctggagccag ctgagatgcc aaacaagagc ccctggtgctc
5940
atgcctgcag tgggtacagt gacggtcagaa gtcgctctctca aaggtctctct ccttgaaggag
6000
cctacgtggtg tcgacagccct ctggaagata tggccaggggt gccatcggg ggactttcac
6060
aaactcagag gggcgttaagg caagcgacaattgatctgca aagcaagatgg cccccaactc
6120
cgcgggaaacg acttgagacaa acaagtttacc actctcgggg aattcaagatt cagcctaaaa
6180
actttctgca ctgtatatcc ctgtggtatgc aaaaaacagg gcggaaaaagt cggcgaaacc
6240
tgaggggccc gcggactgtgct ataccagact tataagactta caactcctggg attacaaatt
6300
ttgtaagaca tggatcgtgta ttcttaacta tggctcctct tactgcttat gtgtacaccg
6360
tgtgtaatta ctgctctgtct attcggctat cgtctcatttt tctctccccctc
6420
gtataaacc gcgtgctgct ctttctttatg ggagttgctgt ccggcttgctca ggcaacgtggg
6480
cgtgggtgcg actgtgctgg gcacgagcag ccgggattaag gggggcctttg gcacccgcttg
6540
tcgctcctt ctcggagactctgtttgggg ccccttcctgt ctggcctttc gcgtccttctt
6600
cgctcgtcct ccggccgtcg tgcagggggt gtggggtgtgg ggtgaagcgtg atcccctgtg
6660
gtgggtgggg aatccagcttc ccctctcttg cctgaatggct tgtcctggtc ccgggctttt
6720
gcggcccgag tcctctctct ccgctcctctg gcgcgcatcag ccgctccccct gcgcggtcctc
6780
cggtcgcttg cggcgccctcg gcgtccttccctg gcgtcctcgag cgaggtgctg
6840
gatctccttg tggggccgcgt cccggcatgc ataccggctga cctggagcgcc tggaaaaacc
6900
tgggatctc gaccaagacat ctacagccgg tctctgggctg ggtgctggct ggtgctggct
6960
daccaagagcg gcggaggtgtg cttttccacac caccctggctgt gtacactttcag ccccaagcag
7020
tttcctggag cggcgtctgtct tgggaacttt ttttataaagaa aagggggggg aagggagggg
7080
aatccactcc ccaacggagc aagcaatcct tggctgctgg atacccacca cacaacgacat
7140
ccttcctgtg ttggcagact accacacggaaggagggtgg agataattgg atggccttggt
7200
tagttgtcagc aaggtacagtg cggttcggctg gccgagtttg gccgagtttgg gagaagaaggg
7260
gacacccgctcgccat ccctgcggcgt gcctggtgct ggtgctgctgt gcctggtgctg gcctggtgct
7320
atttagtgggc tgttttcatc ctgctcctgt gtggggtggtt gccgagtttt gcctggtgctg gcctggtgct
7380
ggacagtgtt gggcctcctct gcctggtgctg ccttgtggtc cccttgtggtc ccttgtggtc
7440
aggaaacca cttgctttagct cttgactaatc cttgagtagcg tggcctcttg tagtgggtgct
7500
cggctctctg tgtgactctg ttaactagag atccctcaga ccccttttagt cattggtgaa 7560
aattcttcagc aggccgctgt taaccocgtc gatcagcctc gcctgtgcct ctctagtgcc 7620
agccatctgt gtgtgtgccc tcccctgcgg ctctcttgac ccctgcaggt gcaccctcaca 7680
cctgcccttc ctaaataaat gaggaaatgt cactcacttg tctgagtagg tgtcatctctt 7740
ttcggggggc tggggtgggg cagcgacgca agggggaggag tggggaagag aatagcagggc 7800
atgctgggagg ttcgcctggcc tctatgtgcct ctgagccgag aagaacccac gcgggctctta 7860
ggggtatccc ccacgcgccc tgtagcgccg ccattaaccgc gcccggtgtg gttggttaagcg 7920
gacgctgagcg ccatacaacct gcacccggccc tagcgccgcc tctcttggct tctctcctct 7980
ccttttcgc gacgctgcccgcccttcctggctaccctaatggtggttgccttag 8040
gttctcgatt tagtgcctta cggccactcgg accccacaaaa actctgtagtg agggtgagtgt 8100
cacgtagtgg gcacatggcc tgtatagcggg cttccgctgc ttttgccctt gttggagctg tttctgttctgtag 8160
totttataatag tgacacttgg tgtcacaactgt gaacacacact caacccatato tgcctcattt 8220
ccttgattt aataagggatt tgtccggtttt ccctgctatat gccctatgatttttctt 8280
acaacaaattact acagcagattat atataaggtg gaaaatgtgt cactcagtgg gttgaaacaactg 8340
cccaggccgc cccagccagc cgaatgtgca aagcagtccat ctcactattg cagcoaccagc 8400
gtgggagaggt tcccacgcgct cccagacgg cagaagatag caagagctac atcccaatta 8460
gtcagacac ccataagcgcc cccttaacctc gcaccccccac ccctctaaact cgcagcagttc 8520
cgcacactctc cgcgctcaact gtcgtaactt ttttttttttttttcttatttctgcagctgccggcgcgcct 8580
cctgtgctct gcacgctccc agaggaagtg agaggcgcttt ttgggggctc taggtctttggt 8640
caaaaagatc ccggagattgt gttatccat tttggatcct gatcagcacgc tgggacaaat 8700
taactcatg catagatatgc cggctatgta taacagcaca aaggtggagga cttaaaactct 8760
gccacattgc cccagtcgcct cctgcggtcct accgcgccg acgcgcgcgc accggggcggg 8820
ttcggagac cccgctggtcg tttcccctgg gcactctgtg agggcagcttt ctgggctggtg 8880
gtcggggacg acgtgacagggt gtcttacagc gcgcacccg aggctgggtt aaccggtggtc 8940
acccgttggc cgggggggttg gcgggcctgg gcaggcggtgt gcggggaggtgc 9000
gttccacgac atcccgccg cgcctgcccc ggccgctagcgc gagcagctgg ccacgcacgc 9060
tgccccggggc agttgcctgcgc gcggccgaccc gcggcagact tgggtgcagct gcggccaggc 9120
gacgagcgtgc ccagactctct ccagccctctc ctgccctccttg cgaagtttggtg 9180
gggtggtgga gcgtgttgttg ccagcgcctgc gggtgtgcgg gcggtctctgtgc 9240
cctggagtcct cgcgcacccc caaacgtggt atttgcagct atattaaggttt aaaaaaacg 9300
aattcttctac ccacaatacctt ataatatagta aaaaaaggtg 9360
tccacactca ttattagttg ccgactacagc cgacctctgag ttagagcttg 9420
gctaatgcagtggt gtttcgctgtg tgaataatgac atcggccgctt ggtccgctgg 9480
aacatacggc ccggccagat aaaaaattta ggctgggggtg ttaataagtg ggtctaatctga 9540
acaaatagtg cggcgcgtgtac ccgctcggcttt gccgctggct gccggctggct ggtccgctgc 9600
cataatgac gcgcagccg gccggctggtg gcgggtttgc gttgggggcgc cctttctgct 9660
tctcgctata cgaacgctgct cggccgtggc ctGCCggtgcat gGtcGtcGttcGt 9720
tccaggggtct aataacgctgtt ctaacagcgcac tcagggmtat caggcagaga 9780
gccaaagggc cc gagaaagcgc gcggacagttt gaaaaagctgc ctctgcggcc gggtccttcat 9840
agctcagc ccctgacga gcatacaca aatcgaagct caagtcagag tgtgcgaacc
ccgacagcct tataaagta ccagcggttt ccctgcgaaa gtcctcgctg gctgcctctc
gttccgaccc ttgctgcatt cggataacct tccgctcttc tcccttcggg aagcttgctgc
cttctctata tgtcagcgtg taggtatctc agtgctgtggt agtgcgtctcg ttccaggtctg
ccgtgtgtgce aagaacccccc ccctgagccc gacgctgctg ccctctccgg ctaactagtgt
cctgatcata accccacagt aaccacacta tgcgctcctgc cgatagcagc cagtcagcag
aacaggttg gtagccttgc atcggccaaa caaacaacccg ctggtagctg tggcccttttt
aatgcagcag acgcgatctc ccgcaaaaa aagagctctc aagaagatgg tttgatcctttt
ttcagggtgt ctgacgctca tggcaacaa aacatacagtt ccggagtttt gcgtcatcaga
ntcattacc tttggtctggg atgggctgcag tgctagtac ccgctcagtt ccctcctctctc
taatcagcata gggggggtcc accatctggcc cccgagctcg caagtagtcc ccgagacca
agttgctcgg caacatttcct cgctcctacta cgtctcggta attgtgcccgg gaagctcaga
taaaatgtgg cgcagatttc agtggtcctg agttgagctag cctaggtgtagc acggtcatgt
agttgcgcgt cttggtgcttc ttcctgctgc gtctcaagcgc gcaaccttgc gcctagctctc
ttttt tagtatttcat aatagctcag cgtctctggc gcattttgatc cttgagctctc
aatcagcata cttacatcagc atctagccttcc gcattgctcag ttcctcctctc
tttctttcgag atttggctc acgtctttgc gctcttgctg cttgagcctc gcattttgatc
tacaagcttagg ccctggccgg acggagctagcc gccttcgcgca catttcccacc aaaaagggc
ccgtgac

<210> SEQ ID NO 8
<211> LENGTH: 11893
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Constructed plasmid vector

<400> SEQUENCE: 8

gtcgcagcgtcc gggagatcct ccggccctccct cagttgctcaac atcgtggctgtg
atggcagacta tgcagcagcct tgcgctctgg tggaggacgct gcgtgtagtg
ccggcagcga aatctagatc aacaaacagc gcagttggcgc gcgtgcagctgc ctggagctgagc
atggctaggt tagcggctc gcctgtgctg gcggagagc ggtgcctggc gcgttcagctgc ctggagctgagc
ataaggagt cccgcttaca taacctcggg taaaaggccc gcctggctga cgcoccaacg 360
accccccgc attacgtcga ataatgacgt atgtccccac atgaacgcca ataggacctt 420
tcaatgagc toaatgggtaa gatttatcac gtaataacgc ocaatgcgca tgaacatcaag 480
tgtatcatat gcaagtaagc cccccctaaatg acgtaatga cggtaaatgg cccgcttggc 540
attatgcgca gtatacgacg cttatggcact ttctactctg gcgatactc taagttatag 600
taatcgtat tcacatccttg atcggttttit ggacagctac caatggccgt ggatagcgg 660
ttgactcag ccgattttcaca atgttcacacc ccattggcagta caatgggcag tttttttgccc 720
acccaaacct cccggacattt ccacaattgtc tgaacaactc ccgccccctctg aoccaaatgg 780
gggttagagc tgaacgcttgag ggttgctata taagcagcgcgt gttttgccttg taagtgggtct 840
ccttcgttag accagatcgtg acgctgggag cctcttgctgt aacctagggaa ccacaacctcctt 900
aagctctaat aaagctctggcc ttgagttctt caagtaagtgt gtgcctggctct gttgtgctag 960
ttgtgtaact agagatccttc cagacccctt tagtcagttg ggaaaaatctc tagcagctggc 1020
gccgccacac gcacccctgaa gcggaaaggg caacccatgg caaccccttgca cgcacgctct 1080
gggtgcctgaa agcogagaca gcgaagggcg agggggcgagt acggttgtcg aoccgaaaaa 1140
tttcgtagac cggagagagat atgggtgctgaa gacgccttgag attaacggcgg 1200
gggagagatgt atgcggagtc gcggaaaaatc gggtgaaagc ggaggggaag aaaaaaatata 1260
aatatataca tataagcacg gcaagcggggt atcgagtaac ftgocagttg aatocctggc 1320
ttggtgactag tgcagcaagc tggtagacacata tgtgagagcgaa cacaacaaccta ccttcctaga 1380
cgggtgatga agaagctccag tccattatata atacagctagc aacccctctaat gttgtgcatac 1440
aaagagatatc gataaagaacc caacagggagct ttagagacaa gatagaggaagg gacoaaaaaca 1500
aaagtaagac cacoagccag cacoagcccg ctaacctcctca gacgctggagg agagagagat 1560
agggatcata gagaagttgca aatattataca tataagagct tagaataatc gcatacttggga 1620
gtacccattt caaaaaagcc gcaagagatg ttgcaagacag aaaaaaagacoatgagaattaa 1680
gacactggta gcgtggggtta cttgaggtaa ctggaagggaa gcgcctggcag atctagatact 1740
aocgtactacag tcaacgcccc ctcattattgg tgtgtgtaactg tcgcagagcgg gacoaaaaattg 1800
caatgtagcgt cagctctctg tggacacttg cactctgggg ctaacagcag 1860
cctcagcagca gaatggtcctg ttggaagacg taacaagctgc cttgagggatt 1920
ttgagttggtc cttggaaactc caatgctggtg cattggtggt cattggtacag 1980
aatataactc tggacagagtt tgtgaaatcgc acaaatcgga tgtgagttgga cagagasattt 2040
aaccaatcaca acaaatcata actaactccaga ataatgacaga cgcacaactca ctaagaaaaag 2100
aatagacac gattagtaactggtatgtgatgtt gttttacata 2160
acaataggtgc tggctccatc aaaaattaactata ctattttagtg tagggagttgg gtaggctta 2220
agataatttt tgtctctactc tcttatagtct agataagtta tagggagttgg tgttttacat 2280
tgttttggcc cccaccccagca ccccaacagg gacccgacga gcggagggag agatagaaacag 2340
gaaggtggag agagacagcgg cacaccaaatc atttggtggtc tgaagaagct gccagtgcgtg 2400
gccgccacttc tgcccagcaca ccctgtcttt ttgctaatg ccattggata ttcacaacat 2460
ttggttggcag ttgagtttccc aaccccaactc cggctgagag ggggggagaag aagggagcatg 2520
agaaatatca agacataata gcgaacagaca tacaacataa 2580
agatccagtt tggtaatttt cgggtgtggcgc gccttcctcgg cccgggggggg ggcocctccgg 2640
cggcgcgccg cctcctcagc gcggcggtg cccagctaga cgaagggcgc aggagcgttc 2700
cggcgcgccg cctcctcagc gcggcggtg cccagctaga cgaagggcgc aggagcgttc 2700
cggcgcgccg cctcctcagc gcggcggtg cccagctaga cgaagggcgc aggagcgttc 2700
accccgagta tcaagcagaa gacataattt ggacggcttc ccggcttattc cggcagctgg 2820
aagggatctc gcggcggtg gaaagcgcat gttatatata ggaagcgcgc agtggcagcg 2940
This page contains a sequence of nucleotide bases. The sequence is continued, with some bases listed as follows:

- continu

The sequence is too long to be fully transcribed here. It appears to be a continuous strand of DNA or RNA.
tccacacaac atacgcacgc gaagcataaa gtgttaagcccc tgggtgtgctt aatgagtgag 9840
cgtaataata ctagtttgcg tgcgttacct gcccgttttcc cagtcgggaa aacctgtgctg 9900
tgggtgtgctt aatggaagcg gccaacgagc cgggttggtcat tgtggtgctg 9960
tccggctcct tggctcagtg actgtgcgag ctcggcgcttt gagggtgcgagt ggagacgtac 10020
agctaccaaa aagcgggtta taccgtttata ctcgacatcgc gggtgattcg cagggacgaa 10080
catgtagcta caagagcccg aaaaagccag gaagcgtttaa aagggcgggtg tgtggcgcggt 10140
tttctcatagg ctcgccccct cgcagcagcgc tccaaaatc ccacgcctcga gtcagaggttg 10200
gcgaaccccg aacagcaactt aagagatacc ggcgtgttccct cctggaagct cctctggtcg 10260
ctctctgttc cgcacocctgc cggttacgctt atacgctgctc gctttctctcc ctctggaaag 10320
cggtggtcct ttcctatgtg cgcgctgtag canacgtacgt ttgcgtgtag ctggcgtcctc 10380
cagtcgggcc tcggtgtgac aaccccccgt tcacccgcaac gctgtggtcc ttcctaggtc 10440
ttcggtgcctt gcgttcacgt gatctgatgc gcgtgacgt ggagtgcgtgc acaggtgtatct 10500
tacgtggcag gcgcgacacc aggtgaggtg ccagtcgctg cacgacgtagct ggcggagcct 10560
taactccgcg cagcgtacgc aacacggtgg caggaacactg agccgatgtgc aaggccgctc 10620
tgcggaaaaa aaggccgtaat gccttctgata cggacagaaaa cggccgagc gtagtcgggtg 10680	ttttttggct tgcagcatgg caagagctag ccagaaaaa ggaaactcag aagagcatctt 10740
gctttttttgtaaagccgg aaggggcagtg ggactagaggc ggcggaaac ccacgctttg 10800
catggagatt cttacaaaaa ctttacocct gcttccttttt aatatatatg agatgctttaa 10860
atctacctac agagttcttg gcatgtcttcg agagttcttg gcatgtcttcg agagttatctg 10920
gggccctccac ttcgctgtct gcttcttttg ctcgttctcag gttggctgac ctcgcgttgtc 10980
gtacatttcg aagagttcttg aaggccggtacc aagggcgagc agctgtggtctc gttgagctgg 11040
aggggagggg ctcgccgggtc agactttgac aagagttcttg gcatgtcttcg agagttatctg 11100
ggctgcaggt gcgtgtcggctt ctctatccttg ctccttcag ttatatattg ctgcgggagg 11160
aggtcagactc agagttcttg gcatgtcttcg tttgagcggc cttgtggcgg gcttctgtcag 11220
catggagatt ctttacaaaaa ctttacocct gcttccttttt aatatatatg agatgctttaa 11280
aggggagggg ctcgccgggtc agactttgac aagagttcttg gcatgtcttcg agagttatctg 11340
gggccctccac ttcgctgtct gcttcttttg ctcgttctcag gttggctgac ctcgcgttgtc 11400
aggggagggg ctcgccgggtc agactttgac aagagttcttg gcatgtcttcg agagttatctg 11460
catggagatt ctttacaaaaa ctttacocct gcttccttttt aatatatatg agatgctttaa 11520
aggggagggg ctcgccgggtc agactttgac aagagttcttg gcatgtcttcg agagttatctg 11580
gggccctccac ttcgctgtct gcttcttttg ctcgttctcag gttggctgac ctcgcgttgtc 11640
aggggagggg ctcgccgggtc agactttgac aagagttcttg gcatgtcttcg agagttatctg 11700
aggggagggg ctcgccgggtc agactttgac aagagttcttg gcatgtcttcg agagttatctg 11760
aggggagggg ctcgccgggtc agactttgac aagagttcttg gcatgtcttcg agagttatctg 11820
aggggagggg ctcgccgggtc agactttgac aagagttcttg gcatgtcttcg agagttatctg 11880
aggtcagactc agagttcttg gcatgtcttcg tttgagcggc cttgtggcgg gcttctgtcag 11940
<210> SEQ_ID: NO 9
<211> LENGTH: 9569
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Constructed plasmid vector
<221> FEATURE:
<222> LOCATION: (4189)...(4199)
<223> OTHER INFORMATION: n=, t, c or g

<400> SEQUENCE: 9

gtggagcat ttggagatct ccggatcocc taggggtcac tcctagagac atctggcctg
60
atgcggcata gttacgacg ctggcttgcct ctgctgggtg gttgaggttc gcttgatag
120
gcgcagcaca aatctagcct acaacaagcc aaggttggcg ctgcaatggt gtaagaatcc
180
tgttgaaggt tagcggctttt gctgctggct gcagatcagt acgttggcag
240
atgtgattt gcagtttatt taatacgtat aactacgggc gtcattgatt cgatacccat
300
atgtgaggt ccggtcggca taacctacgg taaatgccgg ccctgcgctg aacgccccag
360
accggccccc atgagcgcga ataagttcgct atggctccat aagtaagccag ataggaacctt
420
tcctagcag tcgtaaggtt gagaattcag gtaaactgga caccattgca gtacataagc
480
tgttcatag gcacagaacg cccacattgc aagttcaatga agttaatttg ccgcttgctc
540
attatgcgct gacatagagc tcacagcgtct gcaagtctacg ctgcaatcagc taatcatag
600
tcgtcgctat tccactgagtt atcggtttgtt gtgcagctac atcagggctc gttagaagctg
660
tgactaatgg gggattccta aactctacag ccctgagcgt ctaagtggatt tgggttttcc
720
accactacca aatctgacct ttaaatgtgc gtaaagactg cgcocacatt gaoaagatgg
780
gcgggaagc agcggaggttc tggctgcttt tctgtatcag gaggcttgag cggctagtct
840
tctttgtctag cgccaggtctc agctggtttg cctcttggtct acaactggaaga ccctgcgctt
900
atgggtgtcc aagcctcagag gttgggtgtt tggatcagtc gtcgctgtt tgggtctagc
960
tctgttact ggacatggcct ctggctattg ggaatattctct gtagcatgct gcagctgctg
1020
gccggaacgc ggctgtctag gtcggaaggg gaggcctgct aacgctgagcg gcgcggagct
1080
ccgttccggt gaagctggagc gcaagagcoc ggggctggga aagtgtgtgat agoccaaaaa
1140
tttttagatgg cggccagtac ggggtggagc ggggtggtcg aagggagggg ggggctgtgg
1200
gggaattcag atggagaatt gaaaaaactt ggttaagacc agggggaaag aaaaaaataa
1260
aatataaatc ttaaatagtt gcaagagcgg agcttggact attcgcacag atcctggcgc
1320
tgtaggagc acctgaaggg aagctgtctg catatgcagc gacagatggg aattgctgca
1380
caggatatga agctccatcag tcctcttat atacagttag tgcagcgtcc ccctctgatc
1440
aaaggtaga tatataaccg aacaaggaag ctattgggca gataagagaa gacaaaaga
1500
aagtaatgag ccggcagacg ccagggccgc ggcgctgtga ttttaggagcc tggggagaga
1560
gaattgagc aacactggag aagtgatatt ataataaatc aagttggaga aatgctgagc
1620
ttgagctcg ccctggccag gcgcgagggct gcggctggag gcggctggag gcggctggag
1680
gggaaggtag cttgctgtcttg gggtgctgtg gggcggcgag gacagctttg aatcgggagc
1740
tcagagctg cggcggagact gcgagagggcc tggagccttt gcgcgtggtgc gtcacagcg
1800
aatgtttgga gggctttggt ggaactcatt tcgcaacagc cttgctgtctg gaattgtatg
1860
agcctggcct acccggcagt ctgctggctct gacagcttac gcgcgctggg gcgcgagacg
1920
gggtttggt gggctttggt ggaactcatt tcgcaacagc cttgctgtctg gaattgtatg
1980
agcctggcct acccggcagt ctgctggctct gacagcttac gcgcgctggg gcgcgagacg
2040
gaattaca actactacag ttaatccatgt aagtaatgg aacaaagggaa aacaaagggaa
2100
gagaagaatg aacaaagatt atggaattga gonatattgg ccagttttgtg gaaatgtttt
2160
aacatacaaa attggcgttg gatatataaa ttacctcata ttgtaaagggg aggtggatta 2220
gtgtaaaga tattttttcg tgtctctctc atagtgaaat gatttagggc ggaatatc 2280
caatattgtt tcaagacacg octoccaaco cccaggggac ccacacgccg cgaagagat 2340
gaagagagag gtggagagag agacagagac agatcottaac gattatggaa cggatcggaca 2400
cgctgatgcc caatttttcc caaatacttc gagttttctt ccaaaatcta aaaaagagaa 2460
agggagttgg ggtgtaagtg caggagagag aatagtagac ataatagcag cagacatca 2520
aacataaagta tatacagaaac aacctatataa attccaaagt attccggttg 2580
cacacagat ccaatggctgt tagtcagggg cccaggtggct ttgctctcag cagcccaaca 2640
gttggtgaaat ctcactttttt ctactcagttg taattacgaa ttaaatagttt tgcctaaat 2700
aatattagac actgtcatagc tttttccggg tggggaggaag aaaaaaarag gtgggctagt 2760
tttttttcgc agatcpgaact taaaagagaaatt aggcttctg ggggttattt aatgcacact 2820
gtgagtgccg cagctgtgag aagctggtgac cattttctcc cgtacaccgc cttggtctacag 2880
tactagacttc tacaatgtct tctactataat cctttttcgag cagctgattct 2940
ttctccggctt cttctcaggta tagctccgttt cagctccgtcc tctgctgtcag 3000
gaatgtcttc atctagcaggt ctcagaggtct aatggtgtct cctcgaacccc acgccaccaag 3060
agatggacgag gggagagagt ctcgctgag cggctgctgct gacgccagag 3120
agatggacgag cggagaggctg ggaggtggcgc ctggcaaatct tggctatgct ctatgctttc 3180
tgggcataaat gaaattcgtt tggatatgg gaaattcttaa atctagatag 3240
agacccagca tcccttcgcc cagatcgttcc cccctccgaa ggagagagga gaatcaggtg 3300
agtattttata catgtaggaa ccgctgcgttt cagggcaagt cagcttccagt 3360
agagacagat aacccgacgag cggagagagag atctagctgt tctctcctttt gagcttctttgc 3420
atattaaggg tccccatttt ccacgcctcct gttgataacgt tatacaggtt cagtgctgtttc 3480
cttattagat taatcactaat cggggtttcatt agtttacaag ccatatatgg agttccggttt 3540
tatattagat ccttttttctt ccatagttta gccgctgttg tagcaacgcc aacagcaccgc ggggaagcct 3600
gtcaataagc aggattgtgg cctatagttac gccaataggg accttccgac gacgccagtg 3660
gttgtggtgctactal gccgcacgag tgcagactc atacgtccag aatggaaaag 3720
tacgccccct gccgactcag ccctacgattt acatgctcag ccagagcagttt 3780
gacctttagg gcatttcctt ttcagcgagta ctatattttct cttactattc 3840
ggtgtaggg gttttgtcgac atacactggg cagttgtagat cgggtttgact cagggcattt 3900
tccacattg cttccattg cggaggttcgt ggttattttt tggcacaattt atacacggga 3960
catttcacatcattacgac tccacgacgtg gtcggaggttg cggctctcttt tggctctctct 4020
gtggaggagcct cacaatagac gacggtgtttt attggagtctt cagagacgtg cagacacgcagt 4080
gcatccttattc cttctattgg aacaggggcttt tttttaaggag ccatctcaatt cgaagttgac 4140
cggtgaccaact cattacagttg cccagctgctg cttccacggct cagcaacagt 4200
ggaaattttta attgattggagg tctcagatgcc caattccagat cagccaaatctt cagctctcattt 4260
catacttttcttc aggctaccttt taacttgggtg gaaagaagagc 4320
caccagacat cattttttttt tttttttgat ttctttctgttct cttccagcctt cttggagtac 4380
tattgacagc cagttgcagca ctatattatttt cttctaccttt tctatagctt acatcctcaca 4440
ccacataactt aaaccaamgg atgtttttttt gttcgctcgtt gctacgtgac tttggtgatt 4500
agagagatcccaatctctgc cagaatactct gcaggtgtgtg aaggaactgt atagaggagg
cttagaaccct atcaaaacctt aaaaacactgc agataaagccc agagagctca toaatctctgt
4620
ggtgagaaaag cagacaacgt gaattatcg aagatgtgctt cagccaaagct cgtctggatcc
toaactgctga atgggtgttg ttaatggccat tgctctccaa ggcagctgtgg agaaaaaactat
4680
taaggtgaa gacacaaagc caatgctcttt cagagtgaact gacgaagaaa goaactaagt
4740
gcagagatag taccagtagt gtttaatttag agtgccatcaca tggctctcttg agtaaaactgas
4800
gatctctggag ctctcatttg ccagtgggac aatgagtagt tggtggtcttg tgcctgatga
4860
agttctcaag gcttgagcagct ttgagatgt atacaactttt gaaaaaactga ctagatggac
4920
cagttctaat gttattggaag agagagagat ccaagtgtaac ttacctcggca tgaagatgga
4980
agaaaaaataac aacctttcata ctgtctctaat gcgtatgggac atactctagc tggtttagccc
5040
ttcgcaacat ctgtctgagc ttcctctcagc agagacgctcg aagatattcct aagttgctca
5100
tgcgcacat caaataactta atgaagacgag cagagagttg tgaagtcagc cagaggtcctg
5160
agtggtagct gcagagctctc ctgcaagatt tagggctgac ecctcattce ttcctctgtat
5220
caacacacat gcaccaacagc ccttctctct cttgagcaag cttgtttccoc cttaaaagaga
5280
agaaagctga aaaaacctgtc ccccttcacc aagacccagc gacgctgtatc atccgaggtcta
5340
aatagtaaag tattgtttctc gtcgacttca gcagcctaaa aagcttgagac ttaattctaga
5400
cctgagccgac gcagctgttg ctggatatct gcagaattcg cggccagact gcagatatct
5460
agacccagct tcctctgaca aatggttgct aatctcgtga gggagctacta aacctctgtat
5520
agcataaact atacgagatt atacgaattt aaggttcccg gtctcactag gtcaaaacct
5580
atatgagct atagatgacta caactcttgg attacaacaat attgagttatg tgcgttgctga
5640
ttttatttc tggagttgctcc ttctagctat tgggatacgc gcgatcttataa ctttttatact
5700
atgctatgtgc ttcctctgttt gccttttattc gttataaatgg cttcgtgctgt
5760
tccttttgtga gcaggttggcc cccagctttg gcacacgttg cgtggtgtgc acctgtgttgct
5820
cctgagacac cccacacgcttt ggccagcttt ccacccactct gcctgctcctc cgggagtttca
5880
tgccttccccc ctctcattgt gcacagcgggg aacctctgctg gcctctgtct gcctctgtct
6040
gcagagggcct gcgggtgtgc ggacacgtaca atctgttatt ggtgctgggaa aacctctgctg
6040
ccttccttcg tgtgctgac ccctgatttgc cccgagtttgt gcgtggcagc ctctctctgtct
6200
acgctctcttc gcggcagatc tctctctctcc gcggctgtgc gcggttcctgc
6360
ggcctcttgc gtttgtccttc cccttgagct cccgctctct gcggctgtgc gcggttcctgc
6420
tatatataag cttcataatac ctataattg gctacagattc tctctatattc tataataattc
tctctattca gttgatagtc aatctgattg cttgtgatcct tggagtcatg
6580
gtaattctt cttgtctgttt cttcctcttc ttggatctgt tttatttttt cttttttttttt
6640
actgtttatg gcacacgcctt cttctctcttt gcccttcctc gccatctcatc tggggttgtc
6700
goacctattatt cttctatctct gcgagcttttc cttttctttgattcttc tttttttttttttt
6760
aatagataaat tatatttcnga gcaatataat ctttgctatg tggagtctat ttttttatttt
6820
agaacctttc ttgctctgct cttctttgtt accttctttttttacttcttttcttttcttttttttttttttttctactctcctcctt
ttggaaaaacg ttcttccggg cgaaaaacct ctaagctcct accgtgtgctt ggacacagtt 9300
cagtcgaac cactcagtc cccacagtat cttcagcatt ttttaccccc accagagttt 9360
cggggtcagc aaaaaacaaggg cagcacaaga cggcacaaga cggcagggc gacacagggc 9420
aatgtggtat actatactc tttctttctt tataactatt aagacgtttt caggtttttt 9480
gccctaatgag cgcatacata ttggattttta ttttgaataa taacaaataa aggggttcgctt 9540
gccatctttcc ccggaaaaagc ccaacctgac 9569

<210> SEQ ID NO 10
<211> LENGTH: 9394
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: (7971) .. (7971)
<223> OTHER INFORMATION: n=a,t,c or g

<400> SEQUENCE: 10

ttgatcaacgt ttgctaatc acctagggcc caatcgtcg agggaccttaa taacctcctta 60
tcgctctatct tatacataat tataaccttt taaggtttcc ggttccacota ggttacactt 120
gatatacgct tatactataa tcaactcttg gatacacaata tttgtaaag attgactggtt 180
attttaactg atgttgtgcc ttttaactga tggatgaagc atctttgtaat gcttttcttt 240
cattcattcctgaagttcc atgttggatt tttttctcttt cggcttatgc tgggtgtttt 300
tttcttttct ccgactggtg cgcctggtgat acgacgcagt gcggtggtgtg caactgttgtg 360
gacttagaccc cccacccacagtt tggaggtcatt gcacacacct gcacacacct ttggaggt 420
tcggcttttcc ccctctctatcg gcacagctcg ccgctgtccgc tcggcgctgc 480
tggcacaggg gatctacagc gggctacgc gcacacagcg gatagtggtt gttgtgggga 540
tcttctattt gcgctgttcag cttgtttgttc accctggtctg tggccggacac gccctctcgt 600
tccctcccttc cggccctcgt gcacgtctcc ctccgttccc cggctgtttc gcgcctgttct 660
cggctcttttc cccctcttcc cgcacggact gctctctccct tgggccgacct 720
tccctccgct cctactgctgt gcacccgccg gatcctcttt cggcgctgctt 780
tagcactaca gcagctcaca atgctttgtt tgctttgata gaaccacagc aagggagggc 840
ggcttttttt ccactcctgc ctgctctttg aaccctgggg taaagtaactg tttctcctcg 900
tcctatcctg ggcctctcga ctcactacag ttccttactc caccacagct gagtcctctat 960
ttcctttttt gtgcttctgcc tttttacttg tttttctcct gcccgctttt 1020
tgatccgctt atctgacacc tttttttttt gtttttttttt ttttttttttt 1080
tacctgtgtg taagatcttt ttttttaata gctcatatcc cttctttttt gtcggggttt 1140
tgcaaaatttttgctttggtgttacacctttttttgattttttttgattttttttg 1200
ataagtttcata acatcatcgtt aagttgcctgg acctttttttt gccggttgggtt 1260
ggctcatagttttttt gcttcttttt gccgtttttttt ctggttttttttt 1320
ctagttttttt aagttttttt cacgtttttt tttttttttttt 1380
gtatgtgtgtt acatgttttt ttctttatttt tt
cattttggtc tacaagaata tttttggtat tgtcttttgg gttctcttat acatctttaga 1680
atgaggttgg caagttctg agatcttacg cactttttaa aggaaaaggg gggaagtggas 1740
gggctaatct acoccaacag aagacaagat atctctgatc tgtgtgtata caocacacaa 1800
gggactctcc ctgtaggccga gaaactaca ccacgggacag ggaactaga tccactgacc 1860
tttgaggtt gctacaagct agtacagtt gacaacagata aggtagaaga aggcaagtaa 1920
ggagagaaca cccgctcggt acaccccttg agctgcatct ggtgtttgta cccgagagaga 1980
gaaatagtaa agtggagagtt tgaacacgcgg ctagcatttc atcagatggc cggagacgtag 2040
cattcgcggtct tctcggtaa gacccagactg gagccctggga gctctctgagc 2100
taactaggaa aoccactgtct taacgctcaaa taacgcctgc acctgtgtgc taagagtctg 2160
tttgctcctgtc gtgggtctga ctctggttaa ctagatacct tcagacccct ttgtagttct 2220
tggaaactct tcagcagcata gggcgcacaa aagggcggagaa cggtaaaagag 2280
ggctggtagc ttggtgccttt ccataggtc ctggcccccttg aagcagcatca caaaatcgaa 2340
cgctcaagtc agaaggggctg aacccgctcag gcaactaata gataccggcg gtttcctctcc 2400
ggagacccctc gcagcgtcgct ccctgttcgg acctgtgcgc ttctgctgagc 2460
ttcctctcct cggagacggtc ggctcttcct actagctccac gttgtaggtta ttcaggttctg 2520
gtgtagggcct gccgtgtgtaa gttgggctgct gcagaagcag ccccgctcag ggcgcagcggc 2580
.tcgcctagc cggtaactca tgctcttgcag tccacccccg ttaagcagca aatcagccgctg 2640
cgtgcacagc ccaactgaa aagggagtac acagagggag atgaggcgag tgtcaacagg 2700
tctctgaagtt ggtgggtctag tgaacgcctac atagactaag cagtttttgct tattctgtgc 2760
tctgtgaaggg cagttacaagt cggaaaaaga gttggtgacg ctggctccgg caaacaaccc 2820
acccgcgggta gggcgtgtttt ttgtggttcg aacgcgcaga ttaacgcgag aaaaaagagga 2880
ttcagagagac atctctttctg ttttcttacg ggttcgaacgc ctcagctggag cgaacaacctca 2940
cgttaagggct ttttgtgcct gcagatcatca aaaaagatct tcaacagctg ctttttaaat 3000
taaataaagta gtttttaacc aatcctaaat atatatgagt aaaccttggtc tgaacagttcc 3060
caatgccttaa tcaagcgcag agcatctcgc gagcttctgc tttctctgcttt atcctagttg 3120
gcgtgacgcc cgtgcgtgtg aatataactcg atcgagggag gctgtaccct taggcgcgact 3180
.gotgcacaga taacgacgaca cccagcgtca cggcgcagct ctttctcagc atttcagcag aataaaccagcc 3240
ccacggaggga gggccccgcag cacaggtgct cttcgaacctt tataccgctt cccctgtgttc 3300
attatagtgt gcggcggagc tagtaaaggt agtcggcagc ttaaatgttt ggogacgctgct 3360
gttgctcttag ctacagcggat gttgggtacta cgccccggccg cgcgtgcttg tgtgtcatggc ttcacggcgc 3420
ttcggtccttc aagagctccag gcggagtcga tgggttaacc taatggtttc caaaggttctgt 3480
agcctctcctg gcgtgctcag gcgtgtccga agtaaagttcg ggcgcagctt atcaactccgg 3540
gttatggccag cactgctctaa ttcctcttact gcagtgcctct cgtgtaagag tctttctcctg 3600
agttgttagt actacacacc ataattttgta tggcggcagc acctgtgttc tgggctgtctt 3660
tgcgggcggt caatacggaga acaactgacgc ccacatacgg aacaatttaa aagtgcctcctc 3720
atggcgcacgct ctttcgctgtt gcgaaaaactc tcaagaccttt tccctgtgctg gagatcaggct 3780
tcgagttagc caatacggca ctctaagccgt ttttattttct ctcaacgcggct 3840
tctggagtgc aacaaagcgg aacgacaaag cgcctcaaaa aagggataag ggacgcacgag 3900
aagttggacg taactcactct ttcctttctt ctaattctt gagaaccttta ctagagttat 3960
tgctctcatga gggatacat atttgaattt atttggaaatt ataaacaaaat aggaggttccg 4020
cgcacatctt cccgaaaggct gcacattgac gtcgagcctag ccgggatctt cccgacccccc 4080
ttagtgcac attctggtctg atggcagcta ggtaaaccgaag tattctgtcc 4140
cgctttgggt gttaggggca gtctgctgtg gccgggaccaat aatatgtaaat caccaacgcc 4200
aaggcctggc gcacaaatgc atgaggaactg tgcattagggt ttagcgttttc ggtgcgttct 4260
gcaggtgcg ggccagatg acgcgttgac attgccattt gtccagttat taatagttat 4320
catattaaggg gctcattaggt catatgccat atatggggtct cccggttacta taacttaggg 4380
taaagggcgg cacggggtcgc cccgccaaacc accgggcccc atctcagctca ataattacct 4440
atgttcccat ctgtaagcggc atagggacatt tcacagcagc tcaatggttggt ggtattttaac 4500
cttgctaatc gcacagcatttt gacaacccag agggtcagag ccgggacccc 4560
accgcacatc aggtggagct gcgggagtcc actggggggcg ggttgagggct ggcatcggcc 4620
ttcctgtgttg gactactaatg caaacacagtc tctcatttgct caattcagctgt gcgcgttttt 4680
gcagccacta ctctgggggg gctcgtgagg cagctgcaca ctctgcctgctt ggtggtgggt 4740
caagatcagt ccagggagtgg tttgtgggggc aacaaaaata caagggggtttt caagaatagtggcc 4800
gtacaccgcc cggccgatgtt acgggaaaggtt gggaccttggc ggctcctcattg ggttgggct 4860
tgacgcggcg ggctttctcg gctggtactgt tctctggtac ccgggatgggg cgggttgggtt 4920
eaaagataggtt acctgctgctg gctggtatttt actggcaggtt ggtgggttgg ccgggtgggg 4980
taaggagcgt acgtgctgtg ggtgtgttgg ggtgggttggt ggtgggttgg ggtgggttgg 5040
agcaagttggc actgtgtggtg acagcccaagat tttgctagag cagggggctttt aagagtggag 5100
aaggaggtcc actgctgcttta tcagggcagct gaccggcagct aagaggtctggtt gcgggttggtg 5160
aggggcggcgg aggctggtttt ttgcttag ctggtgctttg caggggggtggt aagaggtctggtt 5220
atggggcggc actggtgtct tgtcctagag caggggggtggt aagaggtctggtt gcgggttggtg 5280
agttgagggc ggggggagag aaattttgtat ataaaatatgt aatagttgag gcggggtggtt 5340
agtagtgattc ctgactggtgt tgtagtgatc ctgctatgctt ctcctatgatc gcggtggtggt 5400
taggagctgc ctcctcttctg ctcctcttctc ctcctcttctg ctcctcttctc ctcctcttctg 5460
atatagatgtc ggtcataactt tcctcttcttc ctcctcttctg ctcctcttctc ctcctcttctg 5520
ctgtgactcc gctgctgctg ctgctgctgctg ctgctgctgctg ctgctgctgctg ctgctgctgctg 5580
gcggtggcact ctcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg 5640
tataatatata attagttgctc ctcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg 5700
agatagtagctc tgggggtggc tgggggtggc tgggggtggc tgggggtggc tgggggtggc 5760
ggcaggggg gtcagagctc gttcagagctc gttcagagctc gttcagagctc gttcagagctc 5820
ccccgccgagtt cgctggtgtgctg tcatcctgtaa gctgccccgcag ttcctgtaa gctgccccgcag 5880
atcttggttc aagcaggtgtc ctcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg 5940
agtagtgattc ctcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg 6000
ctgctgctgctg ctgctgctgctg ctgctgctgctg ctgctgctgctg ctgctgctgctg ctgctgctgctg 6060
aattcagcactt ctggtgaggtg gctggtgtgtg ctcctcttctg ctcctcttctg ctcctcttctg 6120
tcttttctct ctcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg 6180
ataggttttgtg ctttttttttt ctgctgtgtggt ctcctcttctg ctcctcttctg ctcctcttctg 6240
tatcatagtgactctgcc ctcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg 6300
atagtagta ggttttggg ttcctcttctg ctcctcttctg ctcctcttctg ctcctcttctg 6360
cgcgggggac cgcacaggcc cgaggaata gaagaagaag gtggagagag agacagagac
agatccatct gatttgagaa cggatcggca ctgcgtgcgc cattctgca gacaatggygc
tagtttact caaatatatga aaagaaaag gggaggtggg ggtgtacatgt cggggaaaag
aatagtagac ataatagcaaa cagacatca aactaaaaga ttcaaaaaac aaattacaaaa
aattcacaat ttctggggttt attacagggga cagcagagat ctagttggtg tagtacgaggcc
ccgggtgttt ctggcagtgc cagccccaac cgtttggaatg accttttttttt atgacttgaa
atccagta taagagcttag tgcctaaattt atttgcnca acgttgata ttttgctgtt
atgggggaagg aaaaaaaggttgagcagttttttttcaga attagaagttt aatggaatat
atgctgtggt gaggattttt aatgcaactgt ggtggtgcga taacagtga aagcoggggtgag
cattgtgcga tgctacccccc tgcggtcag taattgactt ctaacagatct ctcacatca
aagattgata taaactcagcgt tccttggtta tatcogggct cttccttgagg tagttcact
caagcgtcag tcctgcaggg cccegtctta gtcgaggtcg acoggtatoga taagctcgot
ctcacagtt ccagacgggt gcagggccta ataactccttg atagttgata ctttttaag
atatattag ggatccaaac tgttggaggg ccgtttttata cgcattacac ggacctagt
agttataaat agatcactatg tccgggtcga tttcttggtt gccacatatg gggattccgggc
gttacatag tctagtttaa tgcgcgagct gatgcacgce ccaagagccc cceccacttg
acgctcaatg tccgctatgt tcccaagatg aacggcataag gacagcctca ttcacgctaa
atggggtgag ttaaacgtag aactgcgcaac ttcggactac attcaagttta ctcattgcaaac
tagcagccc ctaagtcgctg aatagcccog ccgctaggta tcggcgttaac authcagag
atgcattctg tggacccttc atctttctcg ctgctattag cgtttataaotc ggttttaattct
tagttggtcgc ctcctacatg ggtggggtgtg agcgttggtggtatc tcaattcagaa
ttttctgaaat ctcaccccccag cgggttccta gggagttgtgt ttcgggcaca aatacaccgg
aagcttcccag aatggttcgaa caacctcggg ccattggact gtaggtttgtgatc
ccgggtggggtg ttttttaaaag cagagctgtg ttattggaacc tgcagatcctg ctagcgtac
cggctgaaatg aatgggtggc cggctggctgg tttttttgtt gacagatcggc
gttacacca gggttacacc aaaaagc aggctttaaag aacccactca atgcagctggg
atcctgtgagc atccttttcaaa gaacttaagag ttcaccatgg gcactacatgg gcagcagcaag
agttaattttt ggattttgtg atccagaggg ctcataaggcc accatgtggct tggacactc
atccgctggc caattggtcct tctctgcattttt gttcagtgctgctggg gtcacaagac
agccacaggg caacaatataa taaggtttgt ctctttggtaa aactcccaaggg attcggagac
agttttaagc ctctaggtgtgg ccatctgtga acogttctac ctccacttag agacactcctcc
aaccaaaaaa ccacaaaaa ggatggcttt cttcagacgg ttcggacttag accttttagct
agagagagat acacactctg gggccagata ttcggccagt gttcgtagaac gtttagggga
aagctggtgagc ctataacattt tcaacagact gcagcagctg ctcacatttcc cttctcacttcc
atggtcagaa ttcgcaacaag aagatatttac agaataaggct ttcgcaccagag ctcggtggtg
atcctacatgc ggttaactgctt aatgttggcgc acagagcaggt gggagagtttccc gttgtcgtgt
gaagtctcag gcccggcga gctggagaag ataaccacact ttgaaaaact gacgtgatgg
accagtttca attgtatgag aqagagagag atccaaaattg ctattcctcg catcgaatcg
gagggaaaaatt ccaaccttca acatctgctg atggctatgg gcattaactga cgtgttttgc
ttttagcca atctgctcgg catcttctca gcagagagcc tgaagatatc tcaagctgctc
catgcagcag atgcagaaat cataagacga gcggagagag agctggggtc agcagagctt
gggtggtggt ccgcaagctg ctcggagagac ctggagggct acacattcatt cctctctctgt
atcagacca tgtcagccac cgcgcgtcttc ttcttggcca gatgtgtttc ccttttacaa
sgaagaagct gaaaaaacctt gtcacctcaca acaagaaccc gacacagctg ataagggg
staataaaggt agoatgttcct ctgctgcatc cagaacctca aasaattcca ggtattaacta
gactgagagg ttcgctgaag cgtgtctgctg tgaagactga attcatggg tgttgggtgg
caagtgaact caaccccatg tgtcagcttc acagagacacagcgcgtgtagctgta catcaacta
catgacacca atgcagccatc tagacccagc tttc

<210> SEQ ID NO 11
<211> LENGTH: 986
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Mutated Sindbis virus glycoprotein

<400> SEQUENCE: 11
Met Ser Ala Ala Pro Leu Val Thr Ala Met Cys Leu Leu Gly Asn Val
1 5 10 15
Ser Phe Pro Cys Asp Arg Pro Pro Thr Cys Tyr Thr Arg Glu Pro Ser
20 25 30
Arg Ala Leu Asp Ile Leu Glu Glu Val Asn His Glu Ala Tyr Asp
35 40 45
Thr Leu Leu Asn Ala Ile Leu Arg Cys Gly Ser Gly Ser Gly Ser Val Ile
50 55 60
Asp Asp Phe Thr Leu Thr Ser Pro Tyr Leu Gly Thr Cys Ser Tyr Cys
65 70 75 80
His His Thr Val Pro Cys Phe Ser Pro Val Lys Ile Glu Gln Val Trp
85 90 95
Asp Glu Ala Asp Asp Asn Thr Ile Arg Ile Gln Thr Ser Ala Gln Phe
100 105 110
Gly Tyr Asp Gln Ser Gly Ala Ala Ser Ala Asn Lys Tyr Arg Tyr Met
115 120 125
Ser Leu Leu Leu Met Tyr Pro Tyr Asp Val Pro Asp Tyr Ala Thr Val
130 135 140
Lys Glu Gly Thr Met Asp Asp Ile Lys Ile Ser Thr Ser Gly Pro Cys
145 150 155 160
Arg Arg Leu Ser Tyr Lys Gly Tyr Phe Leu Leu Ala Lys Cys Pro Pro
165 170 175
Gly Asp Ser Val Thr Val Ser Ile Val Ser Ser Asn Ser Ala Thr Ser
180 185 190
Cys Thr Leu Ala Arg Lys Ile Lys Pro Lys Phe Val Gly Arg Glu Lys
195 200 205
Tyr Asp Leu Pro Pro Val His Gly Lys Ile Pro Cys Thr Val Tyr
210 215 220
Asp Arg Leu Ala Ala Thr Ala Gly Tyr Ile Thr Met His Arg Pro
225 230 235 240
Arg Pro His Ala Tyr Thr Ser Tyr Leu Glu Glu Ser Ser Gly Lys Val 245 265 255
Tyr Ala Lys Pro Pro Ser Gly Lys Asn Ile Thr Tyr Glu Cys Lys Cys 260 265 270
Gly Asp Tyr Lys Thr Gly Thr Val Ser Thr Arg Thr Glu Ile Thr Gly 275 280 285
Cys Thr Ala Ile Lys Gln Cys Val Ala Tyr Lys Ser Asp Gln Thr Lys 290 295 300
Trp Val Phe Asn Ser Pro Asp Leu Ile Arg His Asp Asp His Thr Ala 305 310 315 320
Gln Gly Lys Leu His Leu Pro Phe Lys Leu Ile Pro Ser Thr Cys Met 325 330 335
Val Pro Val Ala His Ala Pro Val Val Ile His Gly Phe Lys His Ile 340 345 350
Ser Leu Gln Leu Asp Thr Asp His Leu Thr Leu Thr Thr Arg Arg 355 360 365
Leu Gly Ala Asp Pro Glu Pro Thr Thr Glu Trp Ile Val Gly Lys Thr 370 375 380
Val Arg Asn Phe Thr Val Asp Arg Asp Gly Leu Glu Tyr Ile Trp Gly 385 390 395 400
Asn His Glu Pro Val Arg Val Tyr Ala Gln Glu Ser Ala Pro Gly Asp 405 410 415
Pro His Gly Trp Pro His Glu Ile Val Glu His Tyr His Arg His 420 425 430
Pro Val Tyr Thr Ile Leu Ala Val Ala Ser Ala Thr Val Ala Met Met 435 440 445
Ile Gly Val Thr Val Ala Val Leu Cys Ala Cys Lys Ala Arg Arg Glu 450 455 460
Cys Leu Thr Pro Tyr Ala Leu Ala Pro Asn Ala Val Ile Pro Thr Ser 465 470 475 480
Leu Ala Leu Leu Cys Cys Val Arg Ser Ala Asn Ala Glu Thr Phe Thr 485 490 495
Glu Thr Met Ser Tyr Leu Leu Trp Ser Asn Ser Gln Pro Phe Phe Trp Val 500 505 510
Gln Leu Cys Ile Pro Leu Ala Ala Phe Ile Val Leu Met Arg Cys Cys 515 520 525
Ser Cys Cys Leu Pro Phe Leu Val Val Ala Gly Tyr Leu Ala Lys 530 535 540
Val Asp Ala Tyr Glu His Ala Thr Thr Val Val Asn Val Pro Gln Ile 545 550 555 560
Pro Tyr Lys Ala Leu Val Glu Arg Ala Gly Tyr Ala Pro Leu Asn Leu 565 570
Glu Ile Thr Val Met Ser Ser Ser Val Leu Pro Ser Thr Asn Gln Glu 580 590 595 600
Tyr Ile Thr Cys Lys Phe Thr Thr Val Val Pro Ser Pro Lys Ile Lys 595 600 605
Cys Cys Gly Ser Leu Glu Cys Gln Pro Ala Ala Ala Gly Tyr Thr 610 615 620
Cys Lys Val Phe Gly Oly Val Tyr Pro Phe Met Trp Gly Gly Ala Gln 625 630 635 640
Cys Phe Cys Asp Ser Glu Asn Ser Gln Met Ser Glu Ala Tyr Val Glu 645 650 655
Leu Ser Ala Asp Cys Ala Ser Asp His Ala Gln Ala Asp Leu Lys Val His
Thr Ala Ala Met Lys Val Gly Leu Arg Ile Val Tyr Gly Asn Thr Thr
675 680 685
Ser Phe Leu Asp Val Tyr Val Asn Gly Val Thr Pro Gly Thr Ser Lys
690 695 700
Asp Leu Lys Val Ile Ala Gly Pro Ile Ser Ala Ser Phe Thr Pro Phe
705 710 715 720
Asp His Lys Val Val His Arg Gly Leu Val Tyr Asn Tyr Asp Phe
725 730 735
Pro Glu Tyr Gly Ala Met Lys Pro Gly Ala Phe Gly Asp Ile Gln Ala
740 745 750
Thr Ser Leu Thr Ser Lys Asp Leu Ile Ala Ser Thr Asp Ile Arg Leu
755 760 765
Leu Lys Pro Ser Ala Lys Asn Val His Val Pro Tyr Thr Glu Ala Ser
770 775 780
Ser Gly Phe Glu Met Trp Lys Asn Asn Ser Gly Arg Pro Leu Glu Glu
785 790 795 800
Thr Ala Pro Phe Gly Cys Lys Ile Ala Val Asn Pro Leu Arg Ala Val
805 810 915
Asp Cys Ser Tyr Gly Asn Ile Pro Ile Ser Ile Asp Ile Pro Asn Ala
820 825 830
Asp Phe Ile Arg Thr Ser Asp Ala Pro Leu Val Ser Thr Val Lys Cys
835 840 845
Glu Val Ser Glu Cys Thr Tyr Ser Ala Asp Phe Gly Gly Met Ala Thr
850 855 860
Leu Gln Tyr Val Ser Asp Arg Glu Gly Cys Pro Val His Ser His
865 870 875 880
Ser Ser Thr Ala Thr Leu Gln Ser Thr Val His Val Leu Glu Lys
885 890 995
Gly Ala Val Thr Val His Phe Ser Thr Ala Ser Pro Glu Ala Asn Phe
900 905 910
Ile Val Ser Leu Cys Gly Lys Thr Thr Cys Asn Ala Glu Cys Lys
915 920 925
Pro Pro Ala Asp His Ile Val Ser Thr Pro His Lys Asn Asp Glu Glu
930 935 940
Phe Gln Ala Ala Ile Ser Lys Thr Ser Trp Ser Thr Leu Phe Ala Leu
945 950 955 960
Phe Gly Gly Ala Ser Ser Leu Leu Ile Gly Leu Met Ile Phe Ala
965 970 975
Cys Ser Met Met Leu Thr Ser Thr Arg Arg
980 985 995
What is claimed is:

1. A recombinant replication deficient lentivirus pseudotyped with a modified E2 alphavirus glycoprotein that more efficiently transduces dendritic cells compared to other cell types; wherein the lentivirus comprises an exogenous polynucleotide encoding an antigen associated with a disease, and wherein said lentivirus is capable of stimulating an immune response to said antigen.

2. The recombinant lentivirus of claim 1, wherein the recombinant lentivirus comprises an inactivated or self-inactivating 3' LTR.

3. The recombinant lentivirus of claim 1 wherein the immune response is an antibody response or antigen-specific T-cell response or both.

4. The recombinant lentivirus of claim 3 wherein the immune response is an antigen-specific T-cell response.

5. The recombinant lentivirus of claim 4 wherein the antigen-specific T-cell response is a CD8+ T-cell response.

6. The recombinant lentivirus of claim 1 wherein the virus envelope further comprises an E1 alphavirus glycoprotein.

7. The recombinant lentivirus of claim 1 wherein the E2 glycoprotein is produced from the nucleic acid sequence of SEQ ID NO: 3 or comprises the amino acid sequence of SEQ ID NO: 11.

8. The recombinant lentivirus of claim 1 wherein the lentivirus comprises an HIV vector, a MSCV vector or an MEV vector.

9. The recombinant lentivirus of claim 1 wherein the replication deficient lentivirus further comprises a polynucleotide encoding a second antigen associated with a disease.

10. The recombinant lentivirus of claim 1 wherein the antigen is a tumor associated antigen, viral antigen, bacterial antigen, fungal antigen, protozoan parasite antigen, helminth parasite antigen, or ectoparasite antigen.

11. The recombinant lentivirus of claim 10 wherein the antigen is Her-2 receptor, Mage, Bage, Rag, Nyeso, Mar1/Melan-A, gp100, gp75, md-a, tyrosinase, tyrosinase-related protein, prostate-specific membrane antigen (PSMA), prostate-specific antigen (PSA), ras, bcr/abl, Her2/new, p53, cytochrome P450 1B1, N-acetylglucosaminyltransferase-V, human papilloma virus protein E6, human papilloma virus protein E7, curcinoembryonic antigen and alphafetoprotein, gp120, an adenovirus polypeptide, an alphavirus polypeptide, a calicivirus polypeptide, calicivirus capsid protein, a coronavirus polypeptide, a distemper virus polypeptide, an Ebola virus polypeptide, an enterovirus polypeptide, a flavivirus polypeptide, a hepatitis virus (AE) polypeptide, a hepatitis B core antigen, a hepatitis D surface antigen, a herpesvirus polypeptide, a herpes simplex virus glycoprotein, a varicella zoster virus glycoprotein, an immunodeficiency virus polypeptide, a human immunodeficiency virus envelope protein, a human immunodeficiency virus protease, an infectious peritonitis virus polypeptide, an influenza virus polypeptide, an influenza A hemagglutinin, an influenza A neuraminidase, an influenza A nucleoprotein, a leukemia virus polypeptide, a Marburg virus polypeptide, an orthomyxovirus polypeptide, a papilloma virus polypeptide, a parainfluenza virus polypeptide, a parainfluenza virus hemagglutinin, a parainfluenza virus neuraminidase, a paramyxovirus polypeptide, a parvovirus polypeptide, a pestivirus polypeptide, a picornavirus polypeptide, poliovirus capsid protein, a poliovirus polypeptide, a rabies virus polypeptide, a rabies virus glycoprotein G, a reovirus polypeptide, a retrovirus polypeptide, a rotavirus polypeptide, an Absidia polypeptide, an Acremonium polypeptide, an Alternaria polypeptide, an Aspergillus polypeptide, a Basidiobolus polypeptide, a Bipolaris polypeptide, a Blastomyces polypeptide, a Candida polypeptide, a Coccioidioides polypeptide, a Comidiotholus polypeptide, a Cryptococcus polypeptide, a Curvularia polypeptide, an Epidermophyton polypeptide, an Exophiala polypeptide, an Geotrichum polypeptide, a Histoplasma polypeptide, a Madurella polypeptide, a Malassezia polypeptide, a Microsporum polypeptide, a Moniliella polypeptide, a Morierella polypeptide, a Mycor polypeptide, a Paecilomyces polypeptide, a Penicillium polypeptide, a Phialonomium polypeptide, a Phialophora polypeptide, a Prototheca polypeptide, a Pseudallescheria polypeptide, a Pseudomycodochium polypeptide, a Pythium polypeptide, a Rhinosporidium polypeptide, a Rhizopus polypeptide, a Scolocobasidium polypeptide, a Sporothrix polypeptide, a Staphylinum polypeptide, a Trichophyton polypeptide, a Trichosporon polypeptide, and a Xylocphyla polypeptide, a Babesia polypeptide, a Balanidium polypeptide, a Besnoitia polypeptide, a Cryptosporidium polypeptide, an Eimeria polypeptide, an Encaphalitozoon polypeptide, an Entamoeba polypeptide, a Giardia polypeptide, a Hammondia polypeptide, an Hepatozoon polypeptide, an Isospora polypeptide, a

Ile Ser Gin Ala Val His Ala Ala His Ala Gin Ile Asn Gin Gin Ala Gly 1 5 10 15

Arg

Met Tyr Pro Tyr Asp Val Pro Asp Tyr Ala 1 5 10
Leishmania polypeptide, a Microsporidia polypeptide, a Neospora polypeptide, a Nosema polypeptide, a Pentatrichomonas polypeptide, a Plasmodium polypeptide, P. falci- parum circumsporozoite (PICSP), sporozoite surface protein 2 (PISSP2), carboxyl terminus of liver stage antigen 1 (PfLSA1 c-term), exported protein 1 (PfExp-1), a Pneumo cystis polypeptide, a Sarcozystis polypeptide, a Schisto soma polypeptide, Ta heileria polypeptide, a Toxoplasma polypeptide, a Trypanosoma polypeptide, an Acan thocheilonema polypeptide, an Aeluurostrongylus polypeptide, an Ancyllostoma polypeptide, an Angiostrongylus polypeptide, an Ascaris polypeptide, a Brugia polypeptide, a Bunostomum polypeptide, a Capillaria polypeptide, a Chabertia polypeptide, a Cooperia polypeptide, a Crenosoma polypeptide, a Dictyocaulus polypeptide, a Dirofilaria polypeptide, a Dipetalonema polypeptide, a Diphyllolob rhium polypeptide, a Diphyllodura polypeptide, a Dirofilaria polypeptide, a Dracunculus polypeptide, an Enterobius polypeptide, a Filaroides polypeptide, a Haemonchus polypeptide, a Lagochilascaris polypeptide, a Loa polypeptide, a Mannsella polypeptide, a Muellerius polypeptide, a Naphyetus polypeptide, a Necator polypeptide, a Nemato dirus polypeptide, an Onchocerca polypeptide, an Ophisthochir polypeptide, ab Ostertagia polypeptide, a Parafilaria polypeptide, a Para gonimus polypeptide, a Parascaris polypeptide, a Phy sopeltro polypeptide, a Protostrongylus polypeptide, a Setaria polypeptide, a Spiricera polypeptide, a Spirometa polypeptide, a Stephanofilia polypeptide, a Strongyloides polypeptide, a Strongylus polypeptide, a Thelazia polypeptide, a Toxascaris polypeptide, a Toxocara polypeptide, a Trichinella polypeptide, a Trichostongylus polypeptide, a Trichuris polypeptide, an Uncinaria polypeptide, a Wuchereria polypeptide, a flea polypeptide, a fly polypeptide, a horse tick polypeptide, a horse tick polypeptide, a soft tick polypeptide, a fly polypeptide, a midge polypeptide, a mosquito polypeptide, a sand fly polypeptide, a black fly polypeptide, a horse fly polypeptide, a horse fly polypeptide, a deer fly polypeptide, a tsetse fly polypeptide, a stable fly polypeptide, a myiasis-causing fly polypeptide, a biting gnat polypeptide, an ant polypeptide, a spider polypeptide, a lice polypeptide, a mite polypeptide, a true bug polypeptide, a bed bug polypeptide, and a kissing bug polypeptide.

12. The recombinant lentivirus of claim 1 wherein the lentivirus further comprises a nucleotide sequence encoding a maturation factor.

13. The recombinant lentivirus of claim 12 wherein the maturation factor is selected from the group consisting of GM-CSF, II-2, II-4, II-6, II-7, II-15, II-21, II-23, TNFα, B7.1, B7.2, 4-1BB, CD40 ligand (CD40L) and drug-inducible CD40 (CD40).
polypeptide, a Dracunculus polypeptide, an Enterobius polypeptide, a Filarioidea polypeptide, a Haemonchus polypeptide, a Lagochilascaris polypeptide, a Loa polypeptide, a Mansonella polypeptide, a Muellerius polypeptide, a Namphyetus polypeptide, a Necator polypeptide, a Nematodirus polypeptide, an Oesophagostomum polypeptide, an Onchocerca polypeptide, an Opisthorchis polypeptide, an Ostertagia polypeptide, a Parafilaria polypeptide, a Paragonimus polypeptide, a Parascaris polypeptide, a Physaloptera polypeptide, a Protostrongylus polypeptide, a Setaria polypeptide, a Spirocerca polypeptide, a Spirometra polypeptide, a Stephanofilaria polypeptide, a Strongyloides polypeptide, a Strongylus polypeptide, a Thelazia polypeptide, a Toxascaris polypeptide, a Toxocara polypeptide, a Trichinella polypeptide, a Trichostrongylus polypeptide, a Trichuris polypeptide, an Uncinia polypeptide, a Wuchereria polypeptide, a flea polypeptide, a tick polypeptide, a hard tick polypeptide, a soft tick polypeptide, a fly polypeptide, a midge polypeptide, a mosquito polypeptide, a sand fly polypeptide, a black fly polypeptide, a horse fly polypeptide, a horn fly polypeptide, a deer fly polypeptide, a tsetse fly polypeptide, a stable fly polypeptide, a myiasis-causing fly polypeptide, a biting gnat polypeptide, an ant polypeptide, a spider polypeptide, a lice polypeptide, a mite polypeptide, a true bug polypeptide, a bed bug polypeptide, and a kissing bug polypeptide.

19. The recombinant lentivirus of claim 14 wherein the lentivirus further comprises a nucleotide sequence encoding a maturation factor.

20. A recombinant replication deficient lentivirus pseudotyped with a modified E2 alphavirus glycoprotein comprising a modification that reduces binding of said E2 to heparan sulfate, wherein the lentivirus more efficiently transduces dendritic cells expressing DC-SIGN relative to cell types not expressing DC-SIGN; wherein the lentivirus comprises a polynucleotide encoding an antigen wherein said polynucleotide is exogenous to the lentivirus genome, and wherein said lentivirus is capable of eliciting an antibody response or antigen-specific T-cell response to the antigen.

* * * * *