Wave Propagation in Buildings as Periodic Structures: Timoshenko Beam with Slabs Model and its Application to Structural System Identification and Health Monitoring

Maria Todorovska, U. of Southern California, Los Angeles, CA
Aydin Ozmutlu, Namik Kemal U., Tekirdag, Turkey,
Mahdi Ebrahimian, U. of Southern California, Los Angeles, CA

URL: www.usc.edu/dept/civil_eng/Earthquake_eng
Email: mtodorov@usc.edu
Vision – all these buildings have a SHM system
Motivation

- **Simple beam models** - usually used to study wave propagation in building structures and for **structural system identification**
- Work well in the **longer period range**, where such models are valid
- Can detecting **overall changes** in the structural stiffness
- Can also detect variation of stiffness and damage in **parts of the structure** (e.g. group of floors).
Example – Fit of 4-layer Timoshenko beam

Objective

- Detection of **localized damage**:
 - Requires **more detailed models**, and
 - Fitting over **a broader frequency band**

- Wave propagation is **dispersive** in composite structures (made of different elements and materials)

- Therefore **wave dispersion needs to be understood**

- Towards this goal, we have analyzed several dispersive beam models
 - Shear beam – nondispersive (frame structures)
 - Timoshenko beam - dispersive due to bending deformation - (RC structures with shear walls)
 - Timoshenko beam with slabs – dispersive at higher frequencies
Los Angeles 54-story Office Building

54-story, moment resisting perimeter steel frame

Behaves like shear beam, more so in the EW direction

CSMIP Station 24629

(Rahmani and Todorovska, EESD 2014)
Millikan Library – Evidence of dispersion

9-story, RC structure

Yorba Linda, 2002, M=4.8, R=40 km

(Rahmani and Todorovska, SDEE 2013)
Dispersion due to Bending

- Timoshenko beam model of Millikan library
- Shear, bending, rotatory inertia (Timoshenko, 1921)

(Ebrahimian and Todorovska, J. Eng. Mech., ASCE 2014)
Dispersion in a Timoshenko Beam Model

\[c_L = \sqrt{\frac{E}{\rho}}; \quad c_S = \sqrt{\frac{G}{\rho}}; \quad r_g = \sqrt{\frac{I}{A}}; \quad R = \frac{G}{E} = \frac{c_S^2}{c_L^2} \]

(Ebrahimian and Todorovska, J. Eng. Mech., ASCE 2014)
Additional Dispersion due to Scattering from the Floor Slabs

\[\alpha^* = \frac{\text{mass of slab}}{\text{total floor mass}} \]

- Model of Millikan Library - NS resp.
- Model parameters obtained by LSQ fit of Impulse Responses
- Different curves correspond to different ratio between mass of slabs and mass of the "soft part" of the floor (\(\alpha \))

(Ozmutlu, Ebrahimian and Todorovska, 2015; to be submitted)
Publications:

... more on the project web site at
www.usc.edu/dept/civil_eng/Earthquake_eng/Earthquake_damage_detection_NSF_2008/
Acknowledgements

- Part of this work was supported by a grant from U.S. National Science Foundation (CMMI-0800399).
- Aydin Ozmutlu’s visit to USC was supported by TUBITAK
- Sources of strong motion data:
 for Los Angeles 54-story building the data was obtained from Engineering Centre for Strong Motion Data (www.strongmotioncenter.org/);
 for Millikan Library, the data was obtained from U.S. Geological Survey Strong Motion Instrumentation Project (http://nsmp.wr.usgs.gov/).
Thank You!