Using Project Risk Analysis to Counter Terrorism

Symposium on Terrorism Risk Analysis
January 13-14, 2005

Detlof von Winterfeldt
and Heather Rosoff
University of Southern California
Terrorism Risk Analysis: Research Objectives

- To help anticipate a wide range of terrorist attacks
- To estimate the likelihood of terrorist attacks
- To estimate the consequences of successful terrorist attacks
- To improve the allocation of resources to defend against terrorism
State-of-The Art

- 30 years of experience with risk analysis
- Many recent attempts to apply risk analysis to terrorism
 - Straightforward extensions of PRA
 - Vulnerability and risk scoring systems
 - Project risk analysis approaches
 - Influence diagrams approaches including motivations and capabilities of terrorists
 - Game theory and simulation games
Terrorism Risk Analysis

Threat Analysis

- Attack Scenario Development \(\{A_i\} \)

Vulnerability Analysis

- Probability of an Attack \(p(A_i) \)

- Probability of Success, Given an Attack \(q(S|A_i) \)

Consequence Analysis

- Probability of Damages and Consequences \(f(c|A_i, S) \)
Risk Analysis with Interventions

- Attack Scenarios \(\{A_i\} \)
- Probability of an Attack \(p(A_i) \)
- Probability of Success, Given an Attack \(q(S|A_i) \)
- Probability of Damages and Consequences \(f(c|A_i,S) \)

- Anticipation Intelligence
- Prevention Detection
- Protection Interdiction
- Response Recovery
CREATE Projects

<table>
<thead>
<tr>
<th>Modeling Areas</th>
<th>Ports (Dirty Bomb)</th>
<th>MANPAD</th>
<th>Infrastructure (Electricity)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consequence Assessment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Response Modeling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Economic Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LA and Long Beach Ports

3rd busiest port in the world
36% of US imports
11.4 million TEUs per year
$212 billion cargo value
The Dirty Bomb Project: Risk Analysis

- Develop attack scenarios: Sources x delivery mechanism x location
- Estimate relative probabilities: Project risk analysis
- Provide information for consequence analysis: Radiological source term etc.
Example Sources

- Medical and Research Facilities
 - Blood irradiator (1000 Curies)
 - Research irradiator
 - Industrial irradiator (10,000 Curies)

- Nuclear Waste
 - LLW
 - HLW
 - Spent Fuel (1 million Curies per fuel assembly)

- Special Nuclear Materials
 - Enriched Uranium
 - Plutonium
Three Source Scenarios

1. Theft of radioactive materials from a U.S. hospital (1,000 Ci)
2. Theft of a U.S. industrial irradiator (10,000 Ci)
3. Theft or purchase of spent nuclear fuel from a Russian reactor or reprocessing plant (200,000 Ci)
Scenario 3: Spent Radioactive Fuel from Russian Reactors

A table showing the transportation methods available for different locations:

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>TRANSPORTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>Car/Truck</td>
</tr>
<tr>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>Elevated</td>
<td></td>
</tr>
</tbody>
</table>
Scenario 2: Theft of an Industrial Irradiator

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>TRANSPORTATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Car/Truck</td>
</tr>
<tr>
<td>Bridge</td>
<td>✔</td>
</tr>
<tr>
<td>Ground</td>
<td></td>
</tr>
<tr>
<td>Elevated</td>
<td></td>
</tr>
</tbody>
</table>
Scenario 1: Theft from a Hospital

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>TRANSPORTATION</th>
</tr>
</thead>
</table>
| Bridge | Car/Truck:
| | Ship:
| | Train:
| | Plane/Heli: |
| Ground | BETTER TARGETS AVAILABLE |
| Elevated | Car/Truck:
| | Ship:
| | Train:
| | Plane/Heli: |
The Project Begins....

Plan
1. RAD Source
2. Bomb Target
3. Staffing
4. Funding
5. Communication

Prepare
- Obtain explosives
- Obtain RAD material
- Transport explosives
- Transport RAD material

Build dirty bomb

The Project Begins....

Center for Homeland Security
U.S. Department of Homeland Security
... and is completed

Build dirty bomb → Transport dirty bomb to target → Detonate dirty bomb → Escape

Attack
Building the Dirty Bomb

Building the Dirty Bomb
Start: 10/3/05 ID: 38
Finish: 11/18/05 Dur: 7.2 wks
Comp: 0%

Obtaining the explosives
Start: 10/3/05 ID: 39
Finish: 10/4/05 Dur: 0.4 wks
Comp: 0%

Obtaining the RAD material
Start: 10/10/05 ID: 41
Finish: 11/4/05 Dur: 4 wks
Comp: 0%

Assembling the dirty bomb
Start: 11/7/05 ID: 44
Finish: 11/18/05 Dur: 2 wks
Comp: 0%

The Dirty Bomb Attack
Start: 11/21/05 ID: 46
Finish: 11/21/05 Dur: 0.18 wks
Comp: 0%
The Dirty Bomb Attack

The Dirty Bomb Attack
Start: 11/21/05 ID: 43
Finish: 11/21/05 Dur: 0.18 wks
Comp: 0%

Transport the dirty bomb into I
Start: 11/21/05 ID: 44
Finish: 11/21/05 Dur: 0.15 wks
Comp: 0%

Pick up dirty bomb
Start: 11/21/05 ID: 45
Finish: 11/21/05 Dur: 3 hrs
Res: DB Terrorist

Remote detonate from an off-s
Start: 11/21/05 ID: 47
Finish: 11/21/05 Dur: 1 hr
Res: DB Terrorist

Drop off the dirty bomb at deto
Start: 11/21/05 ID: 46
Finish: 11/21/05 Dur: 3 hrs
Res: DB Terrorist
Event Tree
Output of Risk Analysis

- Probability of Success of Attack
- Probability distribution over source term
 - airborne and respirable
 - Solids and large particles
Consequence Assessment

- **Short term consequences:**
 - Fatalities and injuries from blast
 - Damage to structures from blast
 - Acute radiation exposure

- **Medium Term Consequences**
 - Shut down of port
 - Business interruption

- **Long term consequences:**
 - Latent cancers
Plume Model Provided by the National Atmospheric Release Advisory Center
Rough Consequence Estimates: Cancer Deaths

- Scenario 1: A few
- Scenario 2: Tens
- Scenario 3: Hundreds
Dirty Bomb Project: Economic Modeling

- **Inputs:**
 - Short term closure of port
 - Long term closure of port

- **Results:**
 - $138 million for 15 days closure
 - $35 billion for 120 days closure
Countermeasures

- Radiation detection portals for trucks at entry points
- Inspection of containers including radiation detection
- Personal radiation detection devices
Preliminary Conclusions

- Project risk analysis is a viable tool
 - Can provide a roadmap of terrorist attacks
 - Can establish an upper bound of the probability of a successful attack
 - Can identify project vulnerabilities

- Challenges:
 - How to obtain the probability of attack
 - How to define project failure
 - How to assess failure probabilities
Future Work

- Complete dirty bomb scenarios and probability assessments
- Package project risk analysis “tool” and make available to DHS and others
- New:
 - Develop methodologies for $p(A_i)$ as a function of terrorists’ utilities and capabilities
 - Case study of nuclear device risks