AIAs/GaAs tunnel emitter bipolar transistor

A. F. J. Levy, R. N. Nottenburg, and Y. K. Chen
AT&T Bell Laboratories, Murray Hill, New Jersey 07974

J. E. Cunningham
AT&T Bell Laboratories, Holmdel, New Jersey 07733

(Received 16 January 1989; accepted for publication 23 March 1989)

We report the first microwave AIAs/GaAs tunnel emitter bipolar transistor utilizing nonequilibrium electron transport in the base. At an emitter current density of 1×10^6 A cm$^{-2}$, current gain of greater than unity is measured up to a frequency of 40 GHz. dc current gains of 82 and 53 are measured for devices with emitter stripe widths of 9 and 1.5 µm, respectively. Enhanced device scaling is made possible with the extremely high velocity in the thin base region.

There is interest in using heterojunction bipolar transistors for high-speed electronics applications. However, low power devices require small device dimensions which often result in degradation of common emitter current gain. The inability to scale down device size while maintaining device performance is considered to be a major problem with AIAs heterojunction bipolar transistors. In this letter we show that the current gain can be preserved in transistors with small emitter stripe width ($W = 1.5$ µm) by using a tunnel emitter bipolar transistor (TEBT) and without resorting to a sophisticated process technology specifically designed to improve lateral scaling. In addition, we present the results of the first microwave measurements performed on a TEBT.

Transistor structures were grown by gas source molecular beam epitaxy on semi-insulating (001) oriented GaAs substrates. During growth the substrate temperature was 580 °C and the gas source used was (thermally cracked) arsine. Figure 1 shows a schematic band diagram of a typical TEBT used in our study. Electrons in the n-type (1 x 1016 cm$^{-3}$ Si impurity) GaAs emitter can tunnel through a 120-Å-thick AIAs barrier into a 500-Å-wide p-type (1 x 1019 cm$^{-3}$ Be impurity) GaAs base. After traversing the base, electrons flow through the 5000-Å-thick n-type (5 x 1016 cm$^{-3}$ Si impurity) collector depletion region before being collected in the 5000-Å-thick n$^+$ layer forming the GaAs subcollector contact.

The wafers were fabricated into three level mesa structures using standard photolithographic and wet chemical etching techniques, allowing separate electrical contacts to emitter, base, and collector. Parallel conductivity between the emitter-base diode and the ohmic contacts was eliminated by using a selective spray etch (H_2O_2 adjusted with NH$_2$OH) to define the emitter mesa. Ohmic contacts to emitter and collector were fabricated by rapid thermal annealing of NiGeAu alloy. Base contact was achieved by etching the AIAs tunnel barrier to expose the p-type GaAs base and then using a AuBe alloy. Transistors with various emitter stripe widths $W = 1.5, 2, 3, 4,$ and 9 µm were fabricated. In Fig. 2 we show typical common base and common emitter characteristics of a TEBT with $W = 1.5$ µm.

In Fig. 3 we plot common emitter current gain β as a function of emitter stripe width W for a fixed emitter current density of 2×10^6 A cm$^{-2}$. As may be seen, $\beta = 82$ for $W = 9$ µm and decreases to $\beta = 53$ for $W = 1.5$ µm. Previous scaling studies using standard heterojunction bipolar transistor structures show a factor of ten reduction in β over the same range of W. The improved lateral scaling we observe in TEBTs may be understood as arising from extreme nonequilibrium electron base transport which has been reported in a similar structure. It may be illustrated theoretically that ballistic, compared to diffusive, base transport results in a reduced nonradiative recombination cross section and volume.

For example, in a TEBT electrons are injected with energy E_i in a narrow beam normal to the emitter-base heterojunction plane. An electron injected over a potential step from a thermal distribution has an angular spread given approximately by $\langle \theta \rangle \approx \tan^{-1}(k_B T/E_i)^{1/2}$. Tunnel injection reduces $\langle \theta \rangle$ because tunneling probability is maximized for electrons moving perpendicular to the tunnel barrier. From the common emitter offset voltage and the experimental results of Ref. 7, we estimate $E_i \approx 400$ meV implying $\langle \theta \rangle \lesssim 14^\circ$.

![Diagram](image-url)
mately $\Delta_e = (eZ_0 \nu_{\text{diffusive}} / 4 \mu E_c)^{1/2}$, where μ is the mobility of minority carriers in the base of a diffusive transistor, $\nu_{\text{diffusive}}$ is the diffusion velocity, and Z_0 is the base thickness. As an example, for $Z_0 = 500 \AA$, $\mu = 500 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$, a value of $\nu_{\text{diffusive}}$ in GaAs of $1 \times 10^7 \text{ cm s}^{-1}$, and if $E_c = 400 \text{ meV}$, we obtain $\Delta_e \approx 1/4$. The reduction in Δ_e associated with ballistic electron transport suggests improvement by a factor of 4 in lateral scaling is possible. Additional improvement in lateral scaling arises from a reduced cross section for nonradiative processes due to enhanced electron velocity (compared to $\nu_{\text{diffusive}}$) in the transistor base.

It is well known that speed (current gain cutoff frequency) of a bipolar transistor is determined by the emitter-collector delay time $\tau_{ec} = 1/(2 \pi f_T) = r_c (C_e + C_c) + \tau_c + (R_{ec} + R_e) C_c$, where C_c is the collector capacitance, C_e the collector capacitance, τ_c is the base transit time, τ_e is the collector transit time, r_c is the dynamic emitter resistance, and R_{ec} and R_e are the emitter and collector series resistance, respectively. In the above relation for τ_{ec} the term $r_c (C_e + C_c)$ is current dependent since the dynamic emitter resistance $r_e = n \kappa T / I_e$, where I_e is the emitter current and n is the junction ideality factor. In a conventional N-P heterojunction emitter the maximum emitter current density is limited by the electron thermal velocity (typical diffusion velocity in AlGaAs is around $3 \times 10^7 \text{ cm s}^{-1}$) and the N-type impurity concentration N_e in the wide band-gap emitter. Therefore, at some current density j_e, the current gain B and cutoff frequency f_T will be limited by the electron supply (i.e., space-charge-limited current). In a conventional AlGaAs/GaAs heterojunction bipolar transistor with emitter impurity concentration $N_e = 5 \times 10^{17} \text{ cm}^{-3}$, j_e is limited to $\sim 10^4 \text{ A cm}^{-2}$. On the other hand, in a TEBT j_e is not limited by supply of electrons because of the degenerately doped emitter contact layer and the high (nondiffusive) velocity in the tunnel barrier. Thus, at sufficiently high emitter current, a TEBT may have a smaller emitter charging time compared to a conventional bipolar structure.

We characterized the high-frequency small-signal performance of TEBTs at microwave frequency from 1 to 40 GHz with a vector network analyzer and millimeter wafer probers. Figure 4 shows the measured current gain $|h_{fe}|$ and maximum available power gain MAG as a function of fre-
frequency. The device shows greater than unity current gain and available power gain up to a frequency of 40 and 20 GHz, respectively. The high-frequency tails in the measured current gain are due to large collector capacitance \(C_c \) and large series resistance from the non-self-aligned etched-mesa process. This also gives rise to a large charging time \((R_c + r_c + r_n)C_c \), which limits \(f_T \). Using a \(-20\ \text{dB} \) per decade roll-off slope, we obtain a current gain cutoff frequency \(f_T \), of 21 GHz and a maximum frequency of oscillation \(f_{\text{max}} \) of 12 GHz. We note that improved \(f_T \) and \(f_{\text{max}} \) may be obtained by adopting self-aligned processing techniques which reduce the extrinsic collector capacitance and base resistance.\(^1\) Further improvement of the frequency performance of a TEBT may be obtained by reducing the vertical dimension of the collector depletion region to reduce the transit delay \(\tau_v \).

In conclusion, we have shown dramatically improved lateral device scaling using nonequilibrium minority-carrier transport in a tunnel emitter bipolar transistor and results of the first microwave experiments on such a structure gave a measured current gain of greater than unity up to 40 GHz. Our results suggest that tunnel emitter bipolar transistors fabricated in materials such as AlGaAs, InGaAsP, or InAlGaAs may be of importance in high-speed electronic circuit applications.

