Empowering Fast Incremental Computation Over Large Scale Dynamic Graphs

Charith Wickramaarachchi, Charalampos Chelmis and Viktor Prasanna

University of Southern California

Presented by: Shijie Zhou

University of Southern California
Large-Scale Graph Data

- Online social networks
 - Facebook
 - Twitter
 - Blogger
 - tsū

- Protein interactions

- Air traffic network

- Citation networks

- WWW

- Neural network
Large-Scale Graph Data are “Evolving”

- **Large volume**
 - > 2 B internet users\(^1\)
 - > 1 B active Facebook users\(^1\)
 - > 2.5 M daily active Twitter users\(^2\)

- **High velocity**
 - > 7.5 K Tweets/second\(^1\)
 - > 1.5 K Skype calls/second\(^1\)
 - > 2000k emails/second\(^1\)

\(^1\)http://www.internetlivestats.com

\(^2\)http://www.statista.com/
Vertex-Centric Model (1)

- Program written thinking as a vertex
- Computation performed at vertex level
- Communication using message passing between vertices
- Computation happens in iterations
 - Super-steps
- Bulk synchronous parallel model

Example: Single source shortest path

```java
Compute(Messages msgs) {
    int distance = IsSource(vertex_id()) ? 0 : INF;
    for each m in msgs {
        distance = (distance, m->value())
    }
    if (distance < getValue()) {
        setValue(distance)
        for each e in getOutEdges() {
            sendMessage(e.sink(), distance + e.value())
        }
        voteToHalt()
    }
}
```

Vertex-Centric Model(2)

Example: Single source shortest path
Vertex-Centric Model(3)

Existing Systems
- Google Pregel
- Apache Giraph
- Graph Lab

High latency
Incremental Computation On Large-Scale Graphs

• **Key idea:**
 – Minimize number of re-computations
Approach(1)

Memorization

• Assumptions
 – Deterministic graph algorithm
 – Vertex state at end of any super-step depends only on
 • State at end of previous super-step
 • Incoming messages
 • Memorize incoming messages and state at each super-step
 • Avoid re-computation on updated graph by comparing with the memorized state

1. Mark affected vertices after graph update

<table>
<thead>
<tr>
<th>Type of change</th>
<th>Affected vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex property change</td>
<td>Only the specific vertex</td>
</tr>
<tr>
<td>Vertex addition</td>
<td>The specific vertex and any vertices it points to</td>
</tr>
<tr>
<td>Vertex deletion</td>
<td>All neighbors of the vertex, connected with either incoming or outgoing edges</td>
</tr>
</tbody>
</table>
| Edge addition/deletion | **Directed:** only the source vertex
 | **Undirected:** both ends of the edge |
| Edge property change | **Directed:** only the source vertex
 | **Undirected:** both ends of the edge |

2. Re-execute the vertex if any of following are true
 – Any of the in-coming messages are different from memorized messages at that super-step
 – State is different from memorized state at that super-step
 – Affected vertex

• Advantages
 – Framework takes care of incremental execution

Challenges

• Vertex centric programming model
 – Little computation per vertex
 – Large number of global synchronization steps
 • High communication/computation ratio

• Vertex centric memorization
 – Per-vertex comparisons
 • High comparison cost/compute cost
Our Approach(1)

• **Approach**
 – Multilevel memorization to prune computation
 • Partition level: coarse grain pruning of re-computations
 • Vertex level: fine grain pruning of re-computations
 – Partition centric hierarchical BSP
 • Partition the graph
 • Local barrier synchronization within each partition
 • Global barrier synchronization across partitions
 – Resource allocation
 • 1 node → 1 partition
 • 1 core → subset of vertices
Our Approach (2)

• Programming model
 – Vertex centric
 • Very similar to Pregel model
 – Two levels of iterations
 • Sub-super-steps: intra partition
 • Super-step: inter partition
 – Messaging
 • Intra partition messages sent within sub-super-steps
 • Inter partition messages are aggregated and send at start of each new super-step
 – Reduce operation to limit communication
 • Enable users to minimize communication between partitions
Our Approach(3)

• Advantages
 – Framework takes care of incremental execution
 – Less global barrier synchronization overhead
 – Partition/Sub-graph level pruning of re-computations
 • Less comparison cost / computation cost
Algorithm 1 Max Vertex Using HBSP

1: procedure COMPUTE(Vertex v, Iterator<Messages> msgs)
2: if super-step == 0 and sub-super-step == 0 then
3: BROADCASTGREATESTNEIGHBOR(v) ▷ Find the greatest vertex id \(m \) from the neighborhood set (including self), set \(m \) as the current value, and sent it to all neighbors
4: return
5: end if
6: changed ← false
7: maxId ← v.value
8: while msgs.hasNext do
9: m = msgs.next
10: if maxId < m.value then
11: maxId ← m.value
12: change ← true
13: end if
14: end while
15: if changed then
16: v.value ← maxId
17: BROADCASTUPDATE(v) ▷ Send the vertex value to all neighbors of \(v \)
18: end if
19: end procedure
Example(2)

• Reduce Operation
 – Max vertex id

\[
\text{reduce}(\text{I neighborId}, \ \text{List}<\text{Messages}> \ \text{msgs}) \ \{ \\
\begin{align*}
\text{int} \ max &= 0 \\
\text{for each} \ \text{msg in msgs} \ { \\
\text{max} &= \text{max}(\text{max}, \ \text{msg}.\text{value}) \\
\} \\
\text{sendMessage}(\text{neighbour}, \ \text{new Message(\text{max})});
\}
\]

Per each remote vertex with outgoing messages
Implementation

- Implemented vertex centric and hierarchical BSP model on Apache Giraph (1.1.0)
- Local barriers using in-memory data structures. (Semaphores)
- Communication within partition each using in-memory data structures.
- Number of threads = number of cores
- Work stealing to reduce imbalance computation within each worker.
- Vertex to partition mapping is provided by user
- Memorized state was stored at partition level in local memory
Experimental Setup(1)

- **Cluster of 15 nodes**
 - 8-Core Intel Xeon CPU
 - 16GB RAM

- **Workers**
 - Number of workers: 12
 - Memory per worker: 14GB

- **Datasets**

<table>
<thead>
<tr>
<th>Dataset</th>
<th># Vertices</th>
<th># Edges</th>
</tr>
</thead>
<tbody>
<tr>
<td>SlashDot (SD)</td>
<td>82,168</td>
<td>948,464</td>
</tr>
<tr>
<td>Road Network - CA (RN)</td>
<td>1,965,206</td>
<td>2,766,607</td>
</tr>
</tbody>
</table>

https://snap.stanford.edu/data/
Experimental Setup (2)

- Algorithms
 - Connected component (CC)
 - Single source shortest path (SSSP)
- Generating random graphs for each dataset
 - 100 new edges added randomly
 - 30 random edges deleted
- Partitioning algorithms
 - Random
 - Metis
- Fraction of computations saved
 - Logged number vertices executed
 - Without memorization (r_e)
 - With memorization (m_e)
 - \((r_e - m_e) / r_e\)
Fraction of Computations Saved

RN: Road network
SD: SlashDot
Reduction in Super-Steps(1)

• SlashDot dataset

On static graphs

On updated graphs using memorization
Reduction in Super-Steps(2)

- Road network dataset

On static graphs

On updated graphs using memorization
Conclusion

• Hierarchical BSP Model
 – Huge reduction on number of super-steps for sparse graphs
 – Simple programming abstraction

• Memorization with HBSP
 – No/Minimal impact on number of saved computations
 – Takes the burden of developing incremental graph algorithms

• Future Work
 – Reduce memorization overhead
 • Memory
 • Computation (Due to comparisons)
 – Combine with existing distributed time series graph processing models