Univ of Southern California
University of Southern California
black horizontal bar for print styles

Green Technologies

Master of Science in Green Technologies

Green technologies are concerned with intelligent engineering solutions to the increased global energy demand, improved energy efficiency in commercial and consumer products, minimized footprint of energy usage, and smartly engineered industrial ecology for sustainability. The Master of Science in Green Technologies is an interdisciplinary program that is related to almost all traditional engineering disciplines which include fossil energy, alternative energy, energy conversion, energy distribution, energy conservation, environmental engineering, and information and material science approaches to these engineering aspects. It addresses both the supply side in terms of alternative energy sources as well as the demand side in terms of energy efficiency and carbon waste management.

The program requires 27 units, or about 9 courses; 18 units must be at the 500 level and above. At least 18 units must be taken in the Viterbi School of Engineering. All courses must be approved in advance by the appropriate departmental advisors. Students with B.S. degrees in engineering and science disciplines can be accepted to the program.

These are courses in the major topical areas of the theme
AME 577Survey of Energy and Power for a Sustainable Future3
AME 578Modern Alternative Energy Conversion Devices3
CHE 510Energy and Process Efficiency3
EE 513Solid State Energy Devices3
ISE 576Industrial Ecology: Technology-Environment Interaction3

AME 581Introduction to Nuclear Engineering3
CE 518Carbon Capture and Sequestration3
CE 587Transportation Energy Analysis3
EE 521Power Systems3
EE 526Renewable Energy in Power Systems3
ENE 505Energy and the Environment3
POSC 546Seminar in Environmental Policy4

At least six courses are required from the entire list of required and technical electives.

Other technical electives can be taken with approval of faculty advisors in the participating departments to achieve depth in subject areas relevant to the student’s undergraduate major. For example, students with previous electrical engineering backgrounds will likely take courses in nanotechnology, smart-grid technologies and efficient power distribution. Those with mechanical engineering backgrounds may take courses in combustion, advanced design and radiation heat transfer. Those with backgrounds in chemical engineering may take courses in process design, materials efficiency and nanotechnology.

Special approval may be granted to waive prerequisites if students have taken the equivalent course work elsewhere.