Extreme Ultraviolet Photon-Induced Chemical Reactions in the C2H2–H2O Mixed Ices at 10 K

Authors: Robert Wu C.Y.1; Judge D.L.2; Cheng B-M.3; Shih W-H.4; Yih T-S.4; Ip W.H.4

Source: Icarus, Volume 156, Number 2, April 2002, pp. 456-473(18)

Publisher: Academic Press

Abstract:

Experimental results on the spectral identification of new infrared absorption features and the changes of their absorbances produced through vacuum ultraviolet–extreme ultraviolet (VUV–EUV) photon-induced chemical reactions in the C2H2–H2O mixed ices at 10 K are obtained. To the best of our knowledge, this is the first time that EUV photons have been employed in the study of the photolysis of ice analogues. Two different compositions, i.e., C2H2:H2O=1:4 and 1:1, were investigated in this work. A tunable intense synchrotron radiation light source available at the Synchrotron Radiation Research Center, Hsinchu, Taiwan, was employed to provide the required VUV–EUV photons. In this study, the photon wavelengths selected to irradiate the icy samples corresponded to the prominent solar hydrogen, helium, and helium ion lines at 121.6 nm, 58.4 nm, and 30.4 nm, respectively. The photon dosages used were typically in the range of 1×10^{15} to 2×10^{17} photons. Molecular species produced and identified in the ice samples at 10 K resulting from VUV–EUV photon irradiation are mainly CO, CO2, CH4, C2H6, CH3OH, and H2CO. In addition to several unidentified features, we have tentatively assigned several absorption features to HCO, C3H8, and C2H5OH. While new molecular species were formed, the original reactants, i.e., H2O and C2H2, were detectably depleted due to their conversion to other species. The new chemical species produced by irradiation of photons at 30.4 nm and 58.4 nm can be different from those produced by the 121.6-nm photolysis. In general, the product column density of CO reaches saturation at a lower photon dosage than that of CO2. Furthermore, the production yield of CO is higher than that of CO2 in the photon irradiation. In the present study, we also observe that the photon-induced chemical reaction yields are high using photons at 30.4 and 58.4 nm. The results presented in this work are essential to our understanding of chemical synthesis in ice analogues, e.g., the cometary-type ices and icy satellites of planetary systems. © 2002 Elsevier Science (USA).