University of Southern California

USC Neuroscience

Dion Dickman

Assistant Professor

Research Topics

Synapse development, function, and plasticity in Drosophila

Research Overview

We are interested in synapse development, function, and plasticity in general, and in particular how these processes are stably maintained within proper physiological ranges, referred to as homeostatic synaptic plasticity. Homeostatic feedback systems are a ubiquitous form of biological regulation, which recently have been demonstrated to maintain the stability of nervous system function. Homeostatic processes also play crucial roles in the development of the nervous system, tuning synaptic strength and establishing the proper balance of excitation and inhibition. Dysfunction in these systems may contribute to the etiology of schizophrenia, autism, epilepsy, and other complex neurological and psychiatric diseases. Our long term interests are to identify the molecules and elucidate the mechanisms that achieve and maintain the stability of neural function, and to determine how dysfunction in these processes may contribute to human disease.

We use the fruit fly Drosophila melanogaster as a model system because of its amenability to advanced genetic, molecular, electrophysiological, imaging, and cell biological approaches. Using an electrophysiology-based forward genetic screen, we have isolated several novel genes that are required for adaptive plasticity, including one, dysbindin, which has been linked to schizophrenia in humans. We are currently characterizing other novel genes and performing further screens with the goal of illuminating the molecular, cellular, and synaptic mechanisms governing this complex, fundamental and poorly understood process.

Contact Information

Web Site:
Dickman Lab Website
Mailing Address:
University of Southern California
University Park Campus
3641 Watt Way
HNB 309 M/C 2520
Los Angeles, CA 90089-2520
Office Location:
HNB 309
Office Phone:
(213) 740-7533
Lab Location:
HNB 309


  • PhD, Harvard University
  • Post-doctoral training: UCSF

Research Images

Selected Publications

View a complete PubMed search

View a complete Google Scholar search

Dickman DK, Tong A, and Davis, GW (2012). Snapin is critical for presynaptic homeostatic plasticity. Journal of Neuroscience 32(25): 8716-24.


Bergquist S, Dickman DK, and Davis GW (2010). A hierarchy of cell intrinsic and target-derived homeostatic signaling. Neuron 66(2): 220-234.


Dickman DK and Davis GW (2009). The schizophrenia susceptibility gene dysbindin controls synaptic homeostasis. Science 326(5956): 1127-1130.


Dickman* DK, Kurshan* P, and Schwarz TL (2008). Mutations in a Drosophila α2δ voltage-gated calcium channel subunit reveal a crucial synaptic function. Journal of Neuroscience 28(1): 31-38.  * Equal contribution


Dickman DK, Lu Z, Meinertzhagen IA, and Schwarz TL (2006). Altered synaptic development and active zone spacing at the neuromuscular junctions of endocytosis mutants. Current Biology 16: 591-598.


Dickman DK, Horne JA, Meinertzhagen IA, and Schwarz TL (2005). A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin. Cell 123: 521-533.