Accounting for the World War II Economy in a Neoclassical Model

Ellen R. McGrattan

Lee E. Ohanian

Federal Reserve Bank of Minneapolis, University of Minnesota, and UCLA

February, 2005
Accounting for World War II Macroeconomy

Textbook view - wartime fiscal shock created the wartime boom

But disagreement about appropriate theoretical framework to study episode

Some argue that neoclassical growth model is useful framework

Others argue large departures from the model are required to account for wartime boom

But there is no systematic, quantitative study of this issue

Consequently, lots of open questions about this debate
Key Questions for Neoclassical Model

(1) What are successes and failures of neoclassical model for WWII?

(1a) Can we plausibly account for boom in fully articulated model?

(1b) Are other model variables consistent with wartime data?

(2) Impact of other shocks? (draft, taxes, elimination of New Deal policies...)

(3) Regarding potential failures, what modifications should be pursued?
Our Approach

We address questions using model with wartime spending, tax, draft, productivity shocks

Conduct sequence of experiments which feed in subsets of wartime shocks into model

Compute approximate equilibrium numerically

Graphically compare model time series and actual time series
Goals

(1) Assess how well model accounts for wartime economy in response to all shocks

WWII is good lab for testing model because fiscal change is large & exogenous

(2) Understand impact of each individual shock

Enhance our understanding of the impact of different shocks

Main finding:

Model largely accounts for quantities and prices in response to 1941-1946 shocks
Presentation Outline

Literature Review

Present data on the shocks

Model economy

Present results from experiments

Conclusion
Arguments that Neoclassical Model does not Account for WWII

Skepticism about neoclassical predictions for output and its components, employment, and factor prices

Rotemberg and Woodford (1989, 1992) question whether model is consistent with wartime pre-tax wages (no WWII simulation)

Mulligan (1998) and Eichenbaum et al (2002) question whether model can jointly account for employment and post-tax wages in WWII and other large fiscal shocks (no WWII simulation)

Baxter and King (1993) question whether model can generate large wartime boom (no WWII simulation)

Blanchard and Perotti (2003) question whether model is consistent with impact of large fiscal shock on consumption (no model simulation or WWII data; VAR analysis)

Systematically evaluating these questions requires model that can be simulated in response to shocks
On to the model!
Shocks and Other Model Inputs

Government spending, draft, income taxes, productivity shocks

G accounts for 83% of trend output in 1944

Military accounts for 11% of working age population in 1944

Labor taxes almost double, capital taxes rise by 50%

Productivity: about 8% above normal during World War II

Postwar state - allow for possibility of Depression

Abstract from rationing and monetary/Fed factors

Markov process governs evolution of the state
Model Economy

Preferences

\[U(c, l) = \ln(c) + \psi \ln(1 - l) \]

Representative Family’s Problem

\[
\max E \sum_{t=0}^{\infty} \beta^t \left\{ (1 - a_t)U(c_{ct}, l_{ct}) + a_t U(c_{dt}, \bar{l}) \right\} N_t
\]

Subject to:

\[
(1 - a_t)c_{pt} + a_t c_{dt} + i_{pt} + b_{t+1} = (1 - \tau_{kt})(r_{pt} - \delta)k_{pt} + (1 - \tau_{lt})w_i(1 - a_t)l_{ct} + R_t b_i + T_t
\]
Technology operated by competitive firm

\[z_t F(K_{pt}, K_{gt}, A_tL_{pt}) = z_t (A_tL_{pt})^{1-\theta} K_t^{\theta} \]

Significant wartime government investment (GOPO)

\[K = (\alpha K_p^\rho + (1 - \alpha) K_g^\rho)^{\frac{1}{\rho}} \]

\[K_{i,t+1} = (1 - \delta)K_{i,t} + I_{i,t} \]

Government Spending

\[G_t = C_{gt} + I_{gt} + a_tN_t w_t \tilde{l} \]

Government budget

\[G_t + R_tB_t = B_{t+1} + \tau_k t(R_{pt} - \delta)K_{pt} + \tau_l w_t L_{pt} + r_g t K_{gt} \]

Standard RCE definition
Parameterization

Standard parameter values

<table>
<thead>
<tr>
<th>β</th>
<th>ψ</th>
<th>δ</th>
<th>θ</th>
<th>ρ</th>
<th>α</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.96</td>
<td>2.25</td>
<td>0.06</td>
<td>0.36</td>
<td>1</td>
<td>0.5</td>
</tr>
</tbody>
</table>
Measurement

Output: real GDP less military wages

Consumption: Nondurables and service

Investment: Total private and consumer durables

Government: Expenditures less military wages

Pre-tax capital rental price: Marginal product of capital

Pre-tax wage: Marginal product of labor & mfg wage

Labor input: Hours worked (Kendrick)
Stochastic Specification

Need stochastic process generating wars like WWII

State of economy, S_t, is 6-tuple: $S_t, t = 1941, \ldots, 1946$

First, consider case without possibility of postwar Depression

S_{1941} is observed 1941 realization, ..., S_{1946} is observed 1946 realization

Economy starts with S_{1941}

Denote probability of transiting from date i to date j as ϕ_{ij}
Simulating Wars

Draw ϕ_{ij} from uniform distribution

Generate lots of length T simulations

Keep realizations that have following properties:

Frequency of a war occurring is 70-130% of US frequency

Duration of war is between 70-130% of World War II

Frequency of years in wars is 70-130% of US frequency

Also examine perfect foresight version of the model
Findings of Benchmark Model

Begin with benchmark model:

Stochastic model with all shocks, no probability of postwar depression

Model time series patterns very similar to actual time series

Deviations:

Model labor initially a bit higher than actual labor

Model wage higher after War
Contributions of Individual Shocks

Take benchmark model, and change one factor

Draft unchanged from 1941, rest same as benchmark

Labor tax unchanged from 1941, rest same as benchmark

Capital tax unchanged from 1941, rest same as benchmark

Productivity unchanged from 1941, rest same as benchmark

Government spending unchanged from 1941, rest same as benchmark
Sensitivity Experiments

(1) Benchmark, and add in possibility of postwar Depression

Probabilities of entering Depression from Gallup-Roper surveys

Depression is low productivity state (use 1930s productivity)

(2) Benchmark, and add in capacity utilization

Kydland-Prescot model - utility cost of working

Both intensive and extensive margins vary

(3) Benchmark, with perfect foresight
Neoclassical model is useful for understanding WWII economy

Output boom (Baxter&King)

Consistent with WWII wages & employment (Mulligan, Rotemberg-Woodford)

Deviations relative to theory

Model employment somewhat too high early on

Model wage somewhat too high after the war.

We have abstracted from New Deal initial conditions

New Deal policies restricted employment, raised wages