Flight to Quality, Contagion, and Portfolio Constraints

Anna Pavlova and Roberto Rigobon*

March 2005

Preliminary; Comments Welcome

Abstract

This paper examines the co-movement among stock market prices and exchange rates within a three-country Center-Periphery dynamic equilibrium model in which agents in the Center country face portfolio constraints. In our model, international transmission occurs through the terms of trade, through the common discount factor for cash flows, and, finally, through an additional channel reflecting the tightness of the portfolio constraints. Portfolio constraints are shown to generate endogenous wealth transfers to or from the Periphery countries. These implicit transfers are responsible for creating contagion among the terms of trade of the Periphery countries, as well as their stock market prices. Under a portfolio constraint limiting investment of the Center country in the stock markets of the Periphery, stock prices also exhibit a flight to quality. A negative shock to one of the Periphery countries depresses stock prices throughout the Periphery, while boosting the stock market in the Center.

JEL Classifications: G12, G15, F31, F36

Keywords: International finance, asset pricing, terms of trade, portfolio constraints, contagion.

*Pavlova is from the Sloan School of Management, MIT, and CEPR and Rigobon is from the Sloan School of Management, MIT, and NBER. Correspondence to: Roberto Rigobon, Sloan School of Management, MIT, 50 Memorial Drive, E52-431, Cambridge, MA 02142-1347, rigobon@mit.edu. We thank Jonathan Heathcote and seminar participants at the LSE, MIT, and 2005 Econometric Society Winter Meetings for thoughtful comments.
1. Introduction

As the volume of international trade in the world continues to grow and financial markets become more integrated, many old ailments resurface. The benefits of this process of integration come at a cost: instability in one country quickly spreads to other countries in the world, as it did in the late 19th century. Today, however, shocks to small markets are propagated with much higher intensity. The most prominent examples are the 1994 Mexican, 1997 Asian, and 1998 Russian crises. Without a doubt, the extent and severity of the transmission of these crises surprised many—academics and practitioners—and sparked a vast literature on international financial contagion. Two main questions still motivate most of the research in the area. First, what are the relevant channels of contagion, either in crises or in tranquil times? Second, why do countries that seem so different find their asset markets co-move so strongly?

Two channels are likely to be behind international transmission. The first one, put forward by the international trade literature, is the terms of trade. A shock to one of the countries affects its terms of trade with the rest of the world. Consequently, the trading partners of the country see their goods become more or less valuable, affecting their profits and ultimately the stock prices. The second channel, highlighted in the international asset pricing literature, is the common worldwide discount factor for cash flows (common state prices). Provided that financial markets are frictionless, stock prices of all firms in the world have to be equal to their expected cash flows, discounted with the same state prices. Innovations to these state prices then have to affect stock returns worldwide, generating the co-movement in stock returns even when there is no correlation in their cash flows. While these two transmission channels are clearly at play, they cannot account for many important transmission patterns found in the data. First, empirical studies have cast doubt on the relative importance of the trade channel, demonstrating that even countries with insignificant trade relationships see their stock prices co-move very strongly. For instance, during the 1998 crisis in Russia, stock markets of Argentina and Brazil suffered more
than those of Russia’s neighbors. Even more surprising is the finding that some countries sharing strong trade relationships with a country in crisis, did not suffer at all. For example, Honduras and Guatemala were unaffected by the Mexican crises; the same can be said about Chile, Colombia and Costa Rica in reference to the 1994 Mexican, 1999 Brazilian, and 2002 Argentinean crises. Second, the relative importance of the common discount factor channel has also been questioned. Although the common discount factor theory is able to explain why a crisis may spill over to countries with no trade relationships, it cannot explain why some countries suffer disproportionately more than others. At times of crises, the industrialized economies seem to the affected the least. For example, the 1998 Russian crisis had a devastating effect on the stock markets of Argentina and Brazil, but a relatively small impact on the US. Finally, the following empirical fact cannot be explained by either channel: credit rating downgrades affect both the level and the degree of contagion in the short run (Eichengreen and Mody (2000), Kaminsky and Schmukler (2002), and Rigobon (2002)). According to the trade and the common discount factor theories, a change in a credit rating should have no immediate economic consequences, yet it has a strong impact on the financial market co-movement.

The view we advocate in this paper is that stocks belonging to the same asset class, e.g., stock markets of emerging economies, have to exhibit additional co-movement beyond that entailed by the above two channels. It is commonplace amongst institutional investors, pension funds and mutual funds to face a portfolio constraint limiting exposure to a certain asset class. Then a tightening or a loosening of such a constraint should affect prices of all assets belonging to this class, which would explain the excessive degree of co-movement between, say, Russia and Brazil.

We try to understand formally the workings of this channel within a unified framework which also encompasses international propagation both through the terms of trade and the common discount factor. To our knowledge, this is the first such attempt. The main message of the paper is that financial constraints generate wealth transfers among international investors, which are the central force behind the portfolio constraints channel of contagion. From the methodological viewpoint, this paper presents a flexible equilibrium model which can be used to study many different constraints. The model produces non-trivial implications for the impact of the constraints

3The first work proposing this channel is Calvo (1999) which argues that limits of arbitrage (margin requirements) are at the heart of the Russian contagion. See also Boyer, Kumagai, and Yuan (2005), Gromb and Vayanos (2002), Mendoza and Smith (2002), and Yuan (2005). For evidence on how mutual funds respond to shocks in emerging markets see Broner, Gelos, and Reinhart (2004), Edison and Warnock (2003), Gelos and Wei (2002), Kaminsky, Lyons, and Schmukler (2000), Karolyi (2003), Stulz (1999), and Stulz (2003).
on the terms of trade, stock prices, and their co-movement, which can be characterized in closed-form. While different constraints may have different implications for asset market dynamics, they all operate through their impact on investors’ distribution of wealth and the ensuing wealth transfers.

We consider a three-country Center-Periphery dynamic equilibrium model. We think of the Center country as a large developed economy and of the two Periphery countries as emerging markets. Each country produces its own good via a Lucas (1978) tree-type technology, where each tree's production is driven by its own supply shock. Each country consumes all three goods available in the world, albeit with a preference bias towards its own good. There are no frictions in the goods markets, but financial markets are imperfect in that agents in the Center country face a portfolio constraint. We specialize countries’ preferences so that, absent the portfolio constraints, the model entails (i) constant wealth distribution and (ii) identical portfolio compositions across international investors. This allows us to better disentangle the effects of the portfolio constraint from those of the other two channels. The portfolio constraint alters the wealth distribution and the portfolio compositions, introducing a common stochastic factor, which reflects the tightness of the constraint, into the dynamics of the stock prices and the terms of trade.

In our model, a constraint imposed on the Center country is responsible for generating endogenous wealth transfers to or from the Periphery countries. One can then appeal to the classic Transfer Problem of international economics to pinpoint the directions of the responses of the terms of trade to a tightening of the portfolio constraint. (The Transfer Problem stems from the argument made originally by Keynes that in a world with a home bias in consumption (like ours) an income transfer from one country to another will improve the terms of trade of the recipient country.) A tightening or a loosening of the constraint entails an endogenous wealth transfer: if the Periphery countries are receiving the transfer, the terms of trade of both of them improve; otherwise, they both deteriorate—the two always moving in tandem. The incremental effect of a tightening of the portfolio constraint on stock prices is then also apparent: countries whose terms of trade have improved thanks to the transfer also enjoy an increase in the value of their output and hence a positive return on their stock markets. The stock markets of the Periphery countries thus also move in tandem. So, the portfolio constraint always increases the co-movement among the stock market prices and the terms of trade of the Periphery beyond that implied by the trade and the common discount factor channels, and decreases their co-movement with the Center. Finally, we show that the same pattern of co-movement emerges even when the Periphery countries do not trade amongst
themselves.

For a particular constraint one can fully characterize the states in which it tightens (loosens) and hence the direction of the ensuing wealth transfers. To illustrate this, we present an example featuring a concentration constraint: the resident of the Center is permitted to invest no more than a certain fraction of his wealth into stock markets of the Periphery countries. Such a constraint forces the investor in the Center to decrease his holdings of the Periphery markets. The freed-up assets get invested in the stock market of the Center country and the bond, making the Center country over-weighted in the Center stock market relative to its desired unconstrained position. The Periphery countries take the offsetting position so that the securities markets clear. This portfolio distortion gives rise to two effects we highlight: an amplification and a flight to quality. An amplification effect indicates that a shock to one country has a larger impact on its stock market than that entailed by the unconstrained model. A flight to quality refers to the phenomenon where a negative shock to one of the Periphery countries (an emerging market) depresses stock prices throughout the Periphery, while boosting the stock price of the Center (developed) country.\footnote{For an alternative but related definition of a “flight to quality,” see Vayanos (2004).} To understand the amplification effect, consider, for example, a positive shock in the Center country. The Center’s stock market goes up, and since the Center is over-weighted in its stock market while the Periphery countries are under-weighted, wealth of the Center increases by a larger fraction than that of the Periphery. Hence an implicit wealth transfer from the Periphery to the Center. As highlighted above, such a transfer improves the terms of trade of the Center, lifting its stock market. The flight to quality occurs in response to a negative shock in one of the Periphery countries. The shock causes its stock price to drop, and since both Periphery countries are over-weighted in the Periphery stock markets, they are more adversely affected than the Center country. Again, there is a wealth transfer from the Periphery countries to the Center. Hence, while the Center enjoys an improvement of its terms of trade against the rest of the world and a run-up in its stock market, the terms of trade of all Periphery countries deteriorate and their stock prices fall.

In terms of the modeling framework, the closest to our work are the two-good two-country asset-pricing models of Helpman and Razin (1978), Cole and Obstfeld (1991), and Zapatero (1995), which feature both the trade and the common discount factor channels of international transmission. All these are tractable asset pricing models like ours. In contrast to our paper, however, all these works share an implication that stock markets worldwide are perfectly correlated, and therefore, financial
markets are irrelevant for risk sharing purposes. Indeed, Cole and Obstfeld argue that in such a model Pareto optimality is achieved with or without financial markets. All three works call for a variation on the model that does not produce such abnormal equilibrium behavior, and our model is one such attempt. Neither our benchmark unconstrained economy, nor the economy with portfolio constraints possess the undesirable property that the financial markets are irrelevant.\(^5\) Also related is the literature on portfolio constraints in asset pricing. Basak and Croitoru (2000), Basak and Cuoco (1998), Detemple and Murthy (1997), Detemple and Serrat (2003), Gallmeyer and Hollifield (2004), Shapiro (2002), among others, all consider the effects of portfolio constraints on asset prices. While we employ a similar solution methodology, our implications are quite different because we depart from their single-good framework.

2. The Model

Our goal is to investigate how portfolio constraints affect the co-movement of asset prices and terms of trade. Towards that end, we develop a three country Center-Periphery model in the spirit of Lucas (1982). We think of a Center country as a large developed economy and of the two Periphery countries as small emerging markets. First, we present our model, designed to capture standard features of asset pricing and open economy macroeconomics models in the simplest possible setting. The only financial market imperfection we allow for in the model is that investors in the Center face a portfolio constraint. Second, we solve the model in the absence of the constraint—our benchmark—and characterize the mechanism underlying the co-movement of asset price and terms of trade. Third, we study the general constrained case and show that the constraint gives rise to an additional common factor driving the co-movement of the terms of trade and stock prices in the Periphery countries. This factor is proportional to the relative wealth of international investors. We then demonstrate that our main insights carry through in the setting where there is no trade among the Periphery countries. Finally, we specialize the constraint to be a portfolio concentration constraint and analyze the properties of the stock prices, terms of trade, and portfolio holdings in further detail.

\(^5\)Other recent attempts to break the result of Helpman and Razin are Engel and Matsumoto (2004), Ghironi, Lee, and Rebucci (2005), Pavlova and Rigobon (2003), Serrat (2001), and Soumare and Wang (2005). The last paper, which is still work in progress, adopts a model in the spirit of Zapatero as a benchmark, and argues that portfolio constraints introduced in such an economy may reduce the perfect correlation among countries’ stock markets.
2.1. The Economic Setting

We consider a continuous-time pure-exchange world economy along the lines of Pavlova and Rigobon (2003). The economy has a finite horizon, \([0, T]\), with uncertainty represented by a filtered probability space \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}, P)\), on which is defined a standard three-dimensional Brownian motion \(w(t) = (w^0(t), w^1(t), w^2(t))^\top, \ t \in [0, T]\). All stochastic processes are assumed adapted to \(\{\mathcal{F}_t; t \in [0, T]\}\), the augmented filtration generated by \(w\). All stated (in)equalities involving random variables hold \(P\)-almost surely. In what follows, given our focus, we assume all processes introduced to be well-defined, without explicitly stating regularity conditions ensuring this.

There are three countries in the world economy, indexed by \(j \in \{0, 1, 2\}\). Country 0 represents a large Center country (e.g., an industrialized economy) and countries 1 and 2 smaller Periphery countries (e.g., emerging economies). Each country \(j\) produces its own perishable good via a strictly positive output process modeled as a Lucas (1978) tree:

\[
dY^j(t) = \mu^Y_j(t) Y^j(t) dt + \sigma^Y_j(t) Y^j(t) dw^j(t), \quad j \in \{0, 1, 2\},
\]

where \(\mu^Y_j\) and \(\sigma^Y_j > 0\) are arbitrary adapted processes. The price of the good produced by country \(j\) is denoted by \(p^j\). We fix the world numeraire basket to contain \(\beta \in (0, 1)\) units of the good produced in Country 0 and \((1 - \beta)/2\) units of each of the remaining two goods and normalize the price of the basket to be equal to unity. We think of \(\beta\) as the size of the (large) Center country relative to the world economy.

Investment opportunities are represented by four securities. Each country \(j\) issues a stock \(S^j\), a claim to its output. All stocks are in unit supply. There is also the “world” bond \(B\), which is a money market account locally riskless in units of the numeraire.\(^6\) The bond is in zero net supply. It is convenient to define the terms of trade from the viewpoint the Center country (country 0): \(q^1 \equiv p^1/p^0\) and \(q^2 \equiv p^2/p^0\) are the terms of trade of the Periphery countries 1 and 2, respectively, with the Center country.

A representative consumer-investor of each country is endowed at time 0 with a total supply of the stock market of his country; the initial wealth of agent \(i\) is denoted by \(W_i(0)\). Each consumer \(i\) chooses nonnegative consumption of each good \((C^0_i(t), C^1_i(t), C^2_i(t))\), \(i \in \{0, 1, 2\}\), and a portfolio of the available risky securities \(x_i(t) \equiv (x^S_i(t), x^{S^1}_i(t), x^{S^2}_i(t))^\top\), where \(x^j_i\) denotes a fraction of wealth \(W_i\) invested in security \(j\). The dynamic budget constraint of each consumer takes the

\(^6\)All other bonds are redundant.
standard form

\[
\frac{dW_i(t)}{W_i(t)} = x_i^0(t) \frac{dS^0(t) + p^0(t)Y^0(t)dt}{S^0(t)} + x_i^1(t) \frac{dS^1(t) + p^1(t)Y^1(t)dt}{S^1(t)} + x_i^2(t) \frac{dS^2(t) + p^2(t)Y^2(t)dt}{S^2(t)} \\
+(1 - x_i^0(t) - x_i^1(t) - x_i^2(t)) \frac{dB(t)}{B(t)} - \frac{1}{W_i(t)}(p^0(t)C_i^0(t) + p^1(t)C_i^1(t) + p^2(t)C_i^2(t)) dt,
\]

with \(W_i(T) \geq 0, \ i \in \{0, 1, 2\} \). Preferences of a consumer \(i \) are represented by a time-additive utility function defined over consumption of all three goods:

\[
E \left[\int_0^T u_i(C_i^0(t), C_i^1(t), C_i^2(t)) \, dt \right],
\]

where

\[
\begin{align*}
u_0(C_i^0, C_i^1, C_i^2) &= \alpha_0 \log C_i^0(t) + \frac{1-\alpha_0}{2} \log C_i^1(t) + \frac{1-\alpha_0}{2} \log C_i^2(t), \\
u_1(C_i^1, C_i^1, C_i^2) &= \frac{1-\alpha_1}{2} \log C_i^0(t) + \alpha_1(t) \log C_i^1(t) + \frac{1-\alpha_1}{2} \log C_i^2(t), \\
u_2(C_i^2, C_i^1, C_i^2) &= \frac{1-\alpha_2}{2} \log C_i^0(t) + \frac{1-\alpha_2}{2} \log C_i^1(t) + \alpha_2(t) \log C_i^2(t).
\end{align*}
\]

In our preferences specification, we are building on the insights from the open economy macroeconomics. In particular, we require that our specification possesses the following cornerstone properties: it must be consistent with a broader set of models incorporating non-tradable goods and it must be sufficiently flexible to capture demand shifts. The presence of non-tradable goods produces a home bias in consumption, well-documented empirically and widely accepted to be the force behind the improvement in the terms of trade in response to a demand shift toward domestically-produced goods (or an income transfer). Instead of explicitly modeling the non-tradable goods we adopt a reduced-form approach that produces the same implications: we set the preference weight on the domestically-produced good, \(\alpha_i \), to be greater than \(1/3 \) (and less than 1).\(^7\) This assumption is responsible for the home bias in consumption occurring in our model.

The other component, demand shifts, is also an important source of uncertainty behind our theory of asset price co-movement. First, in the absence of demand uncertainty, free trade in goods may imply excessively high correlation of stock market prices (see Helpman and Razin (1978), Cole and Obstfeld (1991), and Zapatero (1995)). Second, empirical evidence indicates that demand uncertainty is of the same order of magnitude as supply uncertainty (see Pavlova and Rigobon). The literature offers several alternative modeling approaches that capture demand shocks. In this

\(^7\)This assumption may be replaced by explicitly accounting for the demand of non-tradables and assuming that the non-tradables are produced using domestically produced goods. The implications of both models are identical and we hence adopted the more tractable specification.
paper we have opted to follow the seminal contribution of Dornbusch, Fischer, and Samuelson (1977). A change in α_i in our model exactly parallels their demand shifts toward domestically produced goods. Although the interpretation we favor is the one from Dornbusch, Fischer, and Samuelson, it is important to highlight that in our reduced-form model a demand shock may also be interpreted as a shift in the demand toward non-tradable goods. We assume that each α_i is a martingale (i.e., $E[\alpha_i(s)|\mathcal{F}_t] = \alpha_i(t), s > t$), and hence can be represented as

$$d\alpha_1(t) = \sigma_{\alpha_1}(t) \top dw(t), \quad d\alpha_2(t) = \sigma_{\alpha_2}(t) \top dw(t),$$

where $\sigma_{\alpha_1}(t)$ and $\sigma_{\alpha_2}(t)$ are such that our restrictions on α_1 and α_2 are satisfied.\(^8\) Since our primary focus is on the Periphery countries, for expositional clarity, we keep the preference parameter of the Center country, α_0, fixed. Finally, the log-linear specification of the preferences is adopted for tractability: it allows us to derive closed-form expressions for stock prices. These preferences also generate wealth effects driving portfolio rebalancing in our model, which are essential for understanding the portfolio constraints channel of contagion.

Investment policies of residents of Periphery countries 1 and 2 are unconstrained. However, the Center (country 0) resident faces a portfolio constraint of the form

$$f(x_0(t)) \leq 0.$$

Such a constraint may represent, for example, an institutionally imposed constraint on the fraction of the portfolio that could be invested in the emerging markets S^1 and S^2, or borrowing constraints, or special provisions such as margin requirements, collateral constraints, etc. We specialize function $f(\cdot)$ to explore one such example in Section 5. In this paper, we do not provide a model supporting the economic rationale behind imposing a portfolio constraint. Typically, such constraints arise in response to an agency problem in institutional money management as a device limiting risk-taking choices of a manager (see, for example, Basak, Pavlova, and Shapiro (2003), Dybvig, Farnsworth, and Carpenter (2001)).

2.2. Countries’ Optimization

Periphery countries 1 and 2 are unconstrained and are facing (potentially) dynamically complete markets.\(^9\) This implies existence of a common state price density process ξ, consistent with no

\(^8\)An example of a martingale process that does not exist the interval $(1/3, 1)$ is $\alpha_i(t) = E [\alpha_i(T)|\mathcal{F}_t]$, with $\alpha_i(T) \in (1/3, 1)$. We thank Mark Loewenstein for this example.

\(^9\)Although we have three independent sources of uncertainty and four securities available for investment, market completeness is not necessarily guaranteed (see Cass and Pavlova (2004)). To ensure the validity of our solution...
arbitrage, given by
\[d\xi(t) = -\xi(t)[r(t)dt + m(t)^\top dw(t)], \quad (3) \]
where \(r(t) \) is the interest rate on the Bond and \(m(t) \) is the (vector) market price of risk process associated with the Brownian motions \(w^0, w^1, \) and \(w^2 \). The quantity \(\xi(t, \omega) \) is interpreted as the Arrow-Debreu price per unit probability \(P \) of one unit of the numeraire delivered in state \(\omega \in \Omega \) at time \(t \).

Building on Cox and Huang (1989) and Karatzas, Lehoczky, and Shreve (1987), we convert optimization problems of consumers \(i = 1, 2 \) into the following static variational problem:
\[
\max_{C_0^i, C_1^i, C_2^i} E \left[\int_0^T u_i(C_0^i(t), C_1^i(t), C_2^i(t)) \, dt \right] \quad (4)
\]
subject to
\[
E \left[\int_0^T \xi(t) \left(p^0(t)C_0^i(t) + p^1(t)C_1^i(t) + p^2(t)C_2^i(t) \right) \, dt \right] \leq \xi(0)W_i(0). \quad (5)
\]
The first-order conditions for this problem are given by
\[
\frac{\partial u_i(C_0^i(t), C_1^i(t), C_2^i(t))}{\partial C_j^i(t)} = y_ip^j(t)\xi(t), \quad i = 1, 2, \quad j = 0, 1, 2. \quad (6)
\]
where the (scalar) Lagrange multiplier \(y_i \) solves
\[
E \left[\int_0^T \xi(t) \left(p^0(t)C_0^i(t) + p^1(t)C_1^i(t) + p^2(t)C_2^i(t) \right) \, dt \right] = W_i(0). \quad (7)
\]
On the other hand, the Center country is facing financial markets with frictions, and hence, in general, the above state price density process would not appropriately reflect its investment opportunity set. Instead, the state price density faced by Center is
\[d\xi_0(t) = -\xi_0(t)[r_0(t)dt + m_0(t)^\top dw(t)], \quad (8) \]
where the Center-specific subscript \(_0 \) denotes the quantities that, in general, are country-specific. These quantities reflect the impact of the portfolio constraint on the investment opportunity set of the Center country. The optimization problem of the Center subject to the portfolio constraints is formally equivalent to an auxiliary problem with no constraints but the Center facing a fictitious investment opportunity set in which the unrestricted investments are made more attractive relative to the original market and the restricted investments are made relatively less attractive (Cvitanić method, we need to verify that none of the securities comprising the investment opportunity set ends up being redundant in the equilibrium we construct.)
and Karatzas (1992)). Cvitanić and Karatzas show that the tilt in the fictitious investment opportunity set is characterized by the multipliers on the portfolio constraints. Furthermore, one can still represent the constrained consumer’s problem in a static form, with the personalized state price density \(\xi \) replacing \(\xi \) in (4)–(5):

\[
\max_{C_0^0, C_0^1, C_0^2} E \left[\int_0^T u_0(C_0^0(t), C_0^1(t), C_0^2(t)) \, dt \right]
\]

subject to

\[
E \left[\int_0^T \xi_0(t) \left(p_0^0(t)C_0^0(t) + p_1^1(t)C_0^1(t) + p_2^2(t)C_0^2(t) \right) \, dt \right] \leq \xi(0)W_0(0).
\]

The first-order conditions for this problem are given by

\[
\frac{\partial u_0(C_0^0(t), C_0^1(t), C_0^2(t))}{\partial C_j^0(t)} = y_j p_j(t) \xi_0(t), \quad j = 0, 1, 2.
\]

where the (scalar) Lagrange multiplier \(y_t \) solves

\[
E \left[\int_0^T \xi_0(t) \left(p_0^0(t)C_0^0(t) + p_1^1(t)C_0^1(t) + p_2^2(t)C_0^2(t) \right) \, dt \right] = W_0(0).
\]

As is to be expected in a model with log-linear preferences, the consumption expenditure on each good is proportional to wealth. This is a direct consequence of the optimality conditions (6)–(10). However, in our economy the marginal propensity to consume out of wealth is stochastic, due to possible demand shifts.

Lemma 1. The optimal consumption allocations and wealth are linked as follows:

\[
\begin{pmatrix}
C_0^0(t) \\
C_0^1(t) \\
C_0^2(t)
\end{pmatrix} = \frac{1}{p_0^0(t)(T-t)} \begin{pmatrix}
\alpha_0 W_0(t) \\
\frac{1-\alpha_1(t)}{2} W_1(t) \\
\frac{1-\alpha_2(t)}{2} W_2(t)
\end{pmatrix}, \quad \begin{pmatrix}
C_1^0(t) \\
C_1^1(t) \\
C_1^2(t)
\end{pmatrix} = \frac{1}{p_1^1(t)(T-t)} \begin{pmatrix}
\frac{1-\alpha_0}{2} W_0(t) \\
\alpha_1(t) W_1(t) \\
\frac{1-\alpha_2(t)}{2} W_2(t)
\end{pmatrix},
\]

\[
\begin{pmatrix}
C_2^0(t) \\
C_2^1(t) \\
C_2^2(t)
\end{pmatrix} = \frac{1}{p_2^2(t)(T-t)} \begin{pmatrix}
\frac{1-\alpha_0}{2} W_0(t) \\
\frac{1-\alpha_1(t)}{2} W_1(t) \\
\alpha_2(t) W_2(t)
\end{pmatrix}.
\]

Lemma 1 allows us to easily generalize the standard implication of the single-good models that logarithmic agents follow myopic trading strategies, holding only the Merton (1971) mean-variance efficient portfolio. Let \(\sigma \) represent the volatility matrix of the (unconstrained) investment opportunity set.

Corollary 1. The countries’ portfolios of risky assets are given by

\[
x_0(t) = (\sigma(t)^\top)^{-1} m_0(t), \quad x_i(t) = (\sigma(t)^\top)^{-1} m(t), \quad i \in \{1, 2\}.
\]
Note that the portfolio of the investor in the Center generally differs from those chosen by the investors in the Periphery because his investment opportunity set is augmented by the portfolio constraint in the sense that his effective market price of risk m_0 differs from that faced by the (unconstrained) investors in the Periphery. Only when the constraint is absent or not binding all investors in the world economy hold the same portfolio.

2.3. Benchmark Unconstrained Equilibrium

To facilitate the comparisons with the economy where the Center consumer faces a portfolio constraint, we solve for an equilibrium in a benchmark economy with no constraints. Our solution approach replies on aggregating the countries’ representative consumers into a world representative agent. The representative agent is endowed with the aggregate supply of securities and consumes the aggregate output. His utility is given by

$$U(C^0, C^1, C^2; \lambda_0, \lambda_1, \lambda_2) = E \left[\int_0^T u(C^0(t), C^1(t), C^2(t); \lambda_0, \lambda_1, \lambda_2) dt \right],$$

with

$$u(C^0, C^1, C^2; \lambda_0, \lambda_1, \lambda_2) = \max_{\sum_{i=0}^2 C^i_j = C^i} \sum_{i=0}^2 \lambda_i u_i(C^0_i, C^1_i, C^2_i),$$

where $\lambda_i > 0$, $i = 0, 1, 2$ are the weights on consumers 0, 1, and 2, respectively. These weights are going to be constant in the unconstrained economy, but will be stochastic in the economy with portfolio constraints. In the unconstrained case, these weights are the inverses of the Lagrange multipliers on the consumers’ intertemporal budget constraints. Since in equilibrium these multipliers, and hence the weights, cannot be individually determined, we adopt a normalization $\lambda_0 = 1$. The values of λ_1 and λ_2 are reported in the Appendix.

The sharing rules for aggregate endowment, emerging from the representative agent’s optimization, are given by

$$
\begin{pmatrix}
C^0_0(t) \\
C^1_0(t) \\
C^2_0(t)
\end{pmatrix} = \frac{Y^0(t)}{\alpha_0 + \lambda_1 \frac{1-\alpha_1(t)}{2} + \lambda_2 \frac{1-\alpha_2(t)}{2}} \begin{pmatrix}
\alpha_0 \\
\lambda_1 \frac{1-\alpha_1(t)}{2} \\
\lambda_2 \frac{1-\alpha_2(t)}{2}
\end{pmatrix},
$$

Consumption of country 0’s good
of trade.

For domestic goods increases the price of domestic relative to foreign goods, improving the terms of trade in open economy macroeconomics: the terms of trade improve for a country that has experienced an increase in productivity or output as their goods become relatively less scarce. Note that this result is independent of the wealth distribution and the consumption shares. Second, we attempt to capture the “dependent economy” effects highlighted in open economy macroeconomics: the terms of trade improve for a country i that has experienced a positive demand shift (an increase in \(\alpha_i \)). The intuition for this result is that a higher demand for domestic goods increases the price of domestic relative to foreign goods, improving the terms of trade.

These consumption allocations are similar to familiar sharing rules arising in equilibrium models with logarithmic preferences. In the benchmark economy with perfect risk sharing, the correlation between consumption of a particular good and its aggregate output would have been perfect if not for the demand shifts.

Since consuming the aggregate output must be optimal for the representative agent, the terms of trade are given by the pertinent marginal rates of substitution processes

\[
\begin{align*}
\left(C_0^1(t) \right) &= \frac{1}{\frac{1}{2} + \lambda_1 \alpha_1(t) + \lambda_2 \frac{1-\alpha_2(t)}{2}} Y^1(t) \\
\left(C_2^1(t) \right) &= \frac{1}{\frac{1}{2} + \lambda_1 \frac{1-\alpha_1(t)}{2} + \lambda_2 \alpha_2(t)} Y^2(t),
\end{align*}
\]

(12)

These consumption allocations are similar to familiar sharing rules arising in equilibrium models with logarithmic preferences. In the benchmark economy with perfect risk sharing, the correlation between consumption of a particular good and its aggregate output would have been perfect if not for the demand shifts.

Since consuming the aggregate output must be optimal for the representative agent, the terms of trade are given by the pertinent marginal rates of substitution processes

\[
\begin{align*}
q^1(t) &= \frac{u_{C^1}(Y^0(t), Y^1(t), Y^2(t); \lambda_1, \lambda_2)}{u_{C^0}(Y^0(t), Y^1(t), Y^2(t); \lambda_1, \lambda_2)} = \frac{1}{\frac{1}{2} + \lambda_1 \alpha_1(t) + \lambda_2 \frac{1-\alpha_2(t)}{2}} \frac{1}{Y^0(t) - Y^1(t)},
\end{align*}
\]

(14)

Since in our model the terms of trade would play a central role in linking together the countries’ stock markets, we structure our benchmark economy so as to be able to capture some of their most important properties highlighted in international economics. First, the terms of trade of the Periphery countries with the Center decrease in their domestic output and increase in the Center’s output. This is a standard feature of Ricardian models of international trade: terms of trade move against countries experiencing an increase in productivity or output as their goods become relatively less scarce. Note that this result is independent of the wealth distribution and the consumption shares. Second, we attempt to capture the “dependent economy” effects highlighted in open economy macroeconomics: the terms of trade improve for a country i that has experienced a positive demand shift (an increase in \(\alpha_i \)). The intuition for this result is that a higher demand for domestic goods increases the price of domestic relative to foreign goods, improving the terms of trade.
Finally, in our model stock prices can be computed in closed-form (Lemma 2 in the Appendix):

$$
S^0(t) = \frac{1}{\beta + \frac{1-\beta}{2} q^1(t) + \frac{1-\beta}{2} q^2(t)} Y^0(t)(T-t),
$$

Equations (16)–(18) summarize the prices and allocations which would prevail in the competitive equilibrium in our economy. At this point it is important to note that wealth distribution in the economy does not enter as a state variable in any of the above equations. This is because wealth distribution is constant, determined by the initial shareholdings:

$$
\frac{W_1(t)}{W_0(t)} = \lambda_1 \quad \text{and} \quad \frac{W_2(t)}{W_0(t)} = \lambda_2.
$$

The equalities in (19) follow from, for example, (11), combined with Lemma 1. This is a convenient feature of our benchmark equilibrium, allowing us to disentangle the effects of the time-varying wealth distribution in the economy with constraints, presented in the next section.

To facilitate the comparison with the economy with portfolio constraints, we need the following proposition.

Proposition 1. (i) The joint dynamics of the terms of trade and three stock markets in the benchmark unconstrained economy are given by

$$
\begin{bmatrix}
\frac{dq^1(t)}{q^1(t)} \\
\frac{dq^2(t)}{q^2(t)} \\
\frac{dS^1(t)}{S^1(t)} \\
\frac{dS^2(t)}{S^2(t)}
\end{bmatrix} = I(t)dt +
\begin{bmatrix}
a(t) & b(t) & 1 & -1 & 0 \\
\bar{a}(t) & \bar{b}(t) & 1 & 0 & -1
\end{bmatrix}
\begin{bmatrix}
d\alpha_1(t) \\
d\alpha_2(t)
\end{bmatrix}
\begin{bmatrix}
\sigma_{\alpha_1}^0(t)dw^0(t) \\
\sigma_{\alpha_1}^1(t)dw^1(t) \\
\sigma_{\alpha_1}^2(t)dw^2(t)
\end{bmatrix}
\begin{bmatrix}
-\alpha_{\alpha_1}(t) & -\alpha_{\alpha_2}(t) & \beta M(t) & \frac{1-\beta}{2} M(t) & \frac{1-\beta}{2} M(t) \\
\bar{\alpha}_{\alpha_1}(t) & \bar{\alpha}_{\alpha_2}(t) & \beta M(t) & \frac{1-\beta}{2} M(t) & \frac{1-\beta}{2} M(t)
\end{bmatrix}
\begin{bmatrix}
\frac{dS^1(t)}{S^1(t)} \\
\frac{dS^2(t)}{S^2(t)}
\end{bmatrix}
\begin{bmatrix}
\Theta_u(t)
\end{bmatrix}
$$

The quantities X_{α_1}, X_{α_2}, M, a, \bar{a}, b, and \bar{b} are defined in the Appendix.

The drift term $I(t)$ is tedious but straightforward to compute. Given our focus on asset returns correlations and not on their expected returns, it does not concern us in our analysis.
Proposition 1 decomposes stock and commodity markets returns into responses to five underlying factors: demand shifts in Periphery countries 1 and 2 and output (supply) shocks in all three countries. There responses are captured in the matrix Θ_u, henceforth referred to as the unconstrained dynamics. Some of the elements of Θ_u can be readily signed, while the signs of others are ambiguous. In particular, the directions of the transmission of the supply shocks to the stock markets and the terms of trade are unambiguous, while those for the demand shifts depends on the relative size of the countries involved.

Understanding the responses of the terms of the terms of trade to the shocks is key to understanding the transmission of the shocks to the remaining quantities. Thus, a positive supply shock in country j creates an excess supply of good j in the world, and hence its equilibrium price has to drop. The stock of country j benefits from a higher output, while those of the other countries benefit from a higher relative price. This result is independent of the relative sizes of the countries, and is primarily due to homothetic preferences.

On the other hand, a positive demand shift in, say, country 1, implies a shift in the expenditure share away from foreign goods and towards the domestic good. Assuming that the preferences of all other countries are intact, this increases the demand for good 1 in the world and lowers the demand for the other goods. Clearly, this implies that the price of good 1 relative to all other goods increases, but what is the impact on the relative price of goods 0 and 2? This depends on how big the demand drop for each good is. This is where the relative sizes of the countries come into play. If, for example, countries 1 and 2 are similar and small relative to country 0, then the resulting drop in the demand will be relatively more important for (small) country 2 than for (large) country 0. In the limit of country 0 being close in size to the entire world economy, shocks in the Periphery countries 1 and 2 have very small effects on it. Finally, it is important to mention that in our baseline model, all countries have trade relationships with each other, which gives rise to this indirect effect through a change in the relative price of goods 0 and 2. Absent some such trade relationships, the responses of the relative prices to the demand shifts are unambiguous; we present them in Section 4. The model we have developed in this paper has the purpose of studying the implications of portfolio constraints on investors from relatively large developed countries (USA, Europe, Japan, etc.), on the prices of relatively similar and small countries (Argentina, Brazil, Mexico, Russia, South East Asian countries, etc.) Therefore, the following conditions are likely to be satisfied:
Variable/ Effects of $d\alpha_1(t)$ $d\alpha_2(t)$ $dw^0(t)$ $dw^1(t)$ $dw^2(t)$
\begin{align*}
\frac{dq^1(t)}{q^1(t)} & \quad + & -A_1 & + & - & 0 \\
\frac{dq^2(t)}{q^2(t)} & \quad -A_1 & + & + & 0 & - \\
\frac{dS^0(t)}{S^0(t)} & \quad -A_2 & -A_2 & + & + & + \\
\frac{dS^1(t)}{S^1(t)} & \quad +A_1 & -A_2 & + & + & + \\
\frac{dS^2(t)}{S^2(t)} & \quad -A_2 & +A_1 & + & + & + \\
\end{align*}

Table 1: Terms of trade and stock returns in the benchmark unconstrained economy. Where a sign is ambiguous, we specify a sufficient or a necessary and sufficient condition for the sign to obtain: A_1 stands for the “small country” condition A_1, and A_2 stands for the “similar country” condition A_2.

Condition A1. The Periphery countries are small relative to the Center.

\[
\begin{align*}
\lambda_2 & < \frac{3\alpha_0 - 1}{3\alpha_0(t) - 1} \\
\lambda_1 & < \frac{3\alpha_0 - 1}{3\alpha_1(t) - 1}
\end{align*}
\]

Condition A2. The Periphery countries are similar.

\[
\frac{3\alpha_0 - 1}{3\alpha_0 + 1} < \frac{Y^2(t)}{Y^1(t)} < \frac{3\alpha_0 + 1}{3\alpha_0 - 1}
\]

Let us now discuss the details of the transmission mechanisms in our model and relate them to the literature. Table 1 summarizes the patterns of responses of the terms of trade and stock prices to the underlying shocks. One immediate implication of Table 1 is that supply shocks create co-movement between stock market prices worldwide. The co-movement is generated by two channels of international transmission: the terms of trade and the common worldwide discount factors for cash flows (common state prices). To illustrate the workings of the former channel, consider a positive supply shock in country j. Such a shock has a direct (positive) effect on country j’s stock market. Additionally, it has an indirect (also positive) effect on the remaining stock markets through the terms of trade. As discussed earlier, a supply shock in country j creates an excess supply of good j, and hence causes a drop in its price relative to the rest of the goods—i.e. the terms of trade of country j deteriorate against the rest of the world (consistent with the Ricardian trade theory). This implies that the prices of all the other goods increase relative to good j boosting the value of the stock markets in the rest of the world. This explanation of the transmission of shocks across countries appears to be solely based on goods markets clearing, where the terms
of trade act as a propagation channel. This channel, however, is not unrelated to the second
transmission vehicle: the well-functioning financial markets creating the common discount factor
for all financial securities. Indeed, in our model, clearing in good markets implies clearing in stock
and bond markets as well, and hence the above intuition could be restated in terms of equilibrium
responses of the stock market prices. Such intuition for financial contagion was highlighted by Kyle
and Xiong (2001), who see contagion as a wealth effect (see also Cochrane, Longstaff, and Santa-
Clara (2004)). An output shock in one of the countries always increases its stock market price and
hence each agent’s wealth (because all agents have positive positions in each stock market). At a
partial equilibrium level, a wealth increase triggers portfolio rebalancing. In particular, it is easy
to show that, for diversification reasons, our agents demand more of all stocks. At an equilibrium
level, of course, no rebalancing takes place because the agents have identical portfolios and they
must jointly hold the entire supply of each market. Therefore, prices of all stocks move upwards
to counteract the incentive to rebalance. So the two transmission channels—the terms of trade
and the common discount factor—interact and may potentially be substitutes for each other. Note
that none of these arguments makes any assumption about the correlation of output shocks across
countries—in fact, in our model they are unrelated. The existing literature, then, would identify
the phenomenon we described here as “contagion” (the co-movement in stock markets beyond the
co-movement in fundamentals). In our personal views, this co-movement is not contagion—we view
it as nothing else but a simple consequence of market clearing and hence a natural propagation
that is to be expected in any international general equilibrium model. Our definition of contagion
is the co-movement in excess of the natural propagation described above.

While supply shocks induce co-movement among the countries’ stock markets, demand shocks
potentially introduce divergence among the stock markets. The shocks are again transmitted
through the terms of trade. Consider, for example, a positive demand shift occurring in country 1.
Country 1 now demands more of the domestically-produced good and less of the foreign goods,
which unambiguously increases the price of the domestic good. The terms of trade of country 1
against the rest of the world improve. The direction of the response of the other Periphery country’s
terms of trade depends on its wealth relative to the Center, \(\lambda_2 \). If the country is small (Condition
A1), it suffers disproportionately more due to a drop in demand for its good, and its terms of
trade with the Center deteriorate. The impact on the stock markets, however, requires a more
detailed discussion. We can represent the stock market prices of the countries in the following form:
\[
S_0(t) = p_0(t)Y_0(t)(T - t) \ , \ S_1(t) = q_1(t)p_0(t)Y_1(t)(T - t) \ , \ \text{and} \ S_2(t) = q_2(t)p_0(t)Y_2(t)(T - t).
\]
A demand shift in country 1 improves its relative price q^1 and deteriorates the other Periphery countries relative price q^2, pushing S^1 up and S^2 down—this is the direct effect. However, there is also an indirect effect due to a fall in the price level in the Center country. The conditions of similar and small Periphery countries ensure that the impact of these demand shocks on the Center price p^0 are small, forcing the terms of trade effect to dominate. However small, there is a drop in the price of the Center’s good p^0, and hence the stock price of the Center falls.

In summary, supply- and demand-type shocks have the opposite implications on the co-movement of the stock prices worldwide: the supply shocks are responsible for co-movement, while the demand shifts induce divergence. The overall response of the stock markets, then, depends on the relative importance of the two effects, and, of course, on the correlation between the supply and demand shocks. Recall that in our model there are only three primitive sources of uncertainty—the Brownian motions w^0, w^1, and w^2—so the supply and demand shocks are necessarily correlated. In Pavlova and Rigobon (2003) we find that in the data demand shocks are positively correlated with domestic supply innovations. Therefore, in our examples below we assume that a demand shift in country j has a positive loading on w^j and zero loadings on the remaining Brownian motions. To understand the overall impact of an innovation in one of the underlying Brownian motions, it is instructive to consider a special case where the demand shifts are absent. In that case there is no divergence effect present; so all stock returns are perfectly correlated (see, e.g., Zapatero (1995)), and, obviously, are exactly the same across all markets. The introduction of the demand shifts has two implications. First, due to the divergence effect, the stock markets are not going to be perfectly correlated. Second, more importantly, a shock in one of the countries is not going to generate identical stock returns worldwide. For instance, if a domestic shock moves the market j by one percent, it changes the stock markets of the other countries by no more than one percent—in our model, there is no cross-country amplification. This is consistent with most of the empirical evidence on contagion. For our discussion below it is important to understand the intuition behind this result. An output shock w^j in a Periphery country j in our examples always coincides with a domestic demand shift. Again, absent the demand shift, all stock markets would move one-for-one. An incremental effect of a (positive) demand shift is that it increases the total world demand for good j and lowers that for the two remaining goods. This provides an additional boost to the price of the home good (the home stock market) and depresses those of the other goods (the other stock

\footnote{In practice, this is a reasonable outcome. It is equivalent to saying that the price level of the U.S. production is unaffected by the demand in a country like Russia. For example, in recent times, an increase in the demand for oil by China has certainly increased the price of oil but it has had a small effect on the CPI and PPI of the US.}
markets). In contrast, since we do not have demand shifts in the Center country, shocks to its output generate identical stock market returns worldwide.

3. Equilibrium in the Economy with Portfolio Constraints

The previous section outlines two of the most prominent channels behind co-movement among stock markets across the world: the trade and the common discount factor channels. Although the empirical literature has shown that these two transmission mechanisms are important components of the international propagation of shocks, there is a large literature arguing that other channels are at play, primarily those resulting from financial market imperfections.\(^{11}\) For example, shocks to Russia should impact other transition economies in Eastern Europe. Clearly, there are similarities in production in these countries and they share common external markets; therefore, shocks to one country are likely to be common throughout the region. But how strong is such transmission from Russia to the Latin American countries? Probably, much weaker than to Eastern Europe. However, in the data, it seems that some of the Latin American countries—such as Argentina, Brazil, and Mexico—suffered disproportionately more in the 1998 Russian crisis than their Eastern European counterparts, as well as the industrialized countries. The literature put the blame on financial market imperfections.\(^{12}\) One of the most popular imperfections raised by practitioners and academics is portfolio constraints. For example, an investor in the Center might face an institutionally imposed portfolio constraint on exposure to emerging markets. Such a constraint is likely to introduce additional co-movement between the Russian and Brazilian stock markets as investors subject to the constraint simultaneously adjust their holdings in both markets as the constraint becomes tighter. In this section, we explore the validity of this insight by studying general specifications of financial market imperfections in the form of portfolio constraints. Later we specialize the analysis to one particular form of portfolio constraints—a concentration constraint—limiting investors’ exposure to a particular asset class.

\(^{11}\)See Kaminsky, Reinhart, and Végh (2003) for a thorough review of the literature.

\(^{12}\)See Calvo (1999), Yuan (2005) for theories in which margin calls are responsible for the excess co-movement. See Kaminsky and Schmukler (2002) and Rigobon (2002) for empirical evidence suggesting that the co-movement of country stock returns depends on the credit rating and on an asset class its sovereign bonds belong to.
3.1. The Common Factor due to Constraints

In the economy with financial markets imperfections the equilibrium allocation would not be Pareto optimal, and hence the usual construction of a representative agent’s utility as a weighted sum (with constant weights) of individual utility functions is not possible. Instead, we are going to employ a representative agent with stochastic weights (introduced by Cuoco and He (2001)), with these stochastic weights capturing the effects of market frictions.\(^\text{13}\) This representative agent has utility function

\[
U(C^0, C^1, C^2; \lambda_0, \lambda_1, \lambda_2) = E \left[\int_0^T u(C^0(t), C^1(t), C^2(t); \lambda_0(t), \lambda_1(t), \lambda_2(t)) dt \right],
\]

with

\[
u(C^0, C^1, C^2; \lambda_0, \lambda_1, \lambda_2) = \max_{\sum_{i=0}^2 c_i = C^j, j \in \{0,1,2\}} \sum_{i=1}^2 \lambda_i(t) u_i(C^0_i, C^1_i, C^2_i),
\]

where \(\lambda_i(t) > 0, i = 0, 1, 2\) are (yet to be determined) weighting processes, which may be stochastic.

We again normalize the weight of the Center consumer to be equal to one \((\lambda_0(t) = 1)\). The advantage of employing this approach is that a bulk of the analysis of the previous section can be directly imported to this section. In particular, the only required modification to equations (11)–(15) is that the constant weights \(\lambda_1\) and \(\lambda_2\) are now replaced by their stochastic counterparts.

The expressions for stock market prices (16)–(18) also continue to hold in the constrained economy, although the proof of this result is substantially more involved than in the unconstrained case (see Lemma 2 in the Appendix). Note that, as a consequence of the consumption sharing rules and Lemma 1, we again conclude that \(\lambda_1(t) = W_1(t)/W_0(t)\) and \(\lambda_2(t) = W_2(t)/W_0(t)\). So in the constrained economy the wealth distribution, captured by the quantities \(\lambda_1\) and \(\lambda_2\), becomes a new state variable. Finally, in the constrained economy, we also have an analog of Proposition 1, except now the weighting processes \(\lambda_1\) and \(\lambda_2\) enter as additional factors. These factors capture the effects of the portfolio constraint imposed on the Center consumer.

Proposition 2. (i) In an equilibrium with the portfolio constraint, the weighting processes \(\lambda_1\) and \(\lambda_2\) are the same up to a multiplicative constant.

(ii) If such equilibrium exists, the joint dynamics of the terms of trade and three stock markets in the economy with the portfolio constraint are given by

\(^{13}\)The construction of a representative agent with stochastic weights has been employed extensively in dynamic asset pricing. See, for example, Basak and Croitoru (2000), Basak and Cuoco (1998), and Shapiro (2002). A related approach is the extra-state-variable methodology of Kehoe and Perri (2002). For the original solution method utilizing weights in the representative agent see Negishi (1960).
where \(\lambda(t) \equiv \lambda_1(t) \), \(X_\lambda \) is reported in the Appendix, and where the unconstrained dynamics matrix \(\Theta_u(t) \) is as defined in Proposition 1.

Proposition 2 reveals that the same transmission channels underlying the benchmark economy are present in the economy with portfolio constraints. Ceteris paribus, the sensitivities of the terms of trade and stock prices to the demand and supply shocks are exactly the same as in Proposition 1. The only difference from the benchmark economy comes in the first, \(d\lambda/\lambda \), term. This term summarizes the dynamics of the two stochastic weighting processes \(\lambda_1 \) and \(\lambda_2 \), which end up being proportional in equilibrium, and hence represent a single common factor we labelled \(\lambda \). Thus, the process \(\lambda \) should be viewed as an additional factor in stock prices and the terms of trade dynamics, arising as a consequence of the portfolio constraints.

One can already note the cross-markets effect of portfolio constraints: the constraint affects not only the Periphery stocks, but also the stock market of the Center country as well as the commodities markets. This finding is, of course, to be expected in a general equilibrium model. The effects of constraints in financial markets get transmitted to all other (stock, bond, and commodity) markets via pertinent market clearing equations. Our contribution is to fully characterize these spillover effects and identify their direction. The signs of responses to the supply and demand shocks are, of course, the same as in the benchmark unconstrained equilibrium. Additionally, we can sign the responses of all markets to innovations in the new factor; some signs are unambiguous, and some obtain under the following condition:

\[\text{This finding depends on the fact that the Periphery countries face the same investment opportunity set: here, they are both unconstrained. If these two countries faced heterogeneous constraints, in general, one would not expect their weighting processes to be proportional, and hence both } \lambda_1 \text{ and } \lambda_2 \text{ would enter as relevant factors.} \]
Table 2: Terms of trade and stock returns in the economy with portfolio constraints. Where a sign is ambiguous, we specify a sufficient or a necessary and sufficient condition for the sign to obtain: A_1 stands for the “small country” condition A_1, A_2 for the “similar country” condition A_2, and A_3 for the “small effect on p^0” condition A_3.

Condition A3. The effect of the portfolio constraint on p^0 is small.\(^{15}\)

\[
\frac{1 - \beta}{2} q^2(t)(\tilde{A}(t) - A(t)) < \beta A(t), \quad (20)
\]

\[
\frac{1 - \beta}{2} q^1(t)(A(t) - \tilde{A}(t)) < \beta \tilde{A}(t). \quad (21)
\]

Table 2 reveals the contribution of financial markets frictions to international co-movement. The first striking implication is that the terms of trade faced by both Periphery countries move in the same direction in response to an innovation in the λ factor. A movement in λ should be viewed in our model as a tightening or a loosening of the portfolio constraint. Given the definition of λ, such innovation reflects a wealth redistribution in the world economy to or away from the Periphery countries. Parallels may be drawn to the literature studying the effects of wealth transfers on the terms of trade. It is well-known from the classic “Transfer Problem” of the international economics literature that an income (wealth) transfer from one country to another improves the terms of trade of the recipient. This effect is driven by a home bias in consumption (we have it as well). As wealth of the recipient of the transfer goes up, his total demand increases, but because of the preference bias for his own good, the demand for the domestic good increases disproportionately more. Hence the price of the home good rises relative to the foreign goods, improving the terms of trade of the recipient.\(^{16}\) In our model, a decrease in the factor λ is interpreted as a wealth

\(^{15}\)In Appendix B we investigate this condition further, representing it as a combination of two effects: (i) the impact of a change in λ (the implied wealth transfer) on the demand for good 0 and (ii) the cross-country demand reallocation in the Periphery countries.

\(^{16}\)See, for example, Krugman and Obstfeld (2003) for a textbook exposition. The original “Transfer Problem” was the outcome of a debate between Bertil Ohlin and John Maynard Keynes regarding the true value of the burden
transfer to the Center country. Just like in the Transfer Problem, it results in an improvement of its terms of trade against the world and hence a deterioration of the terms of trade of both Periphery countries—the reverse for an increase in \(\lambda \). The main difference between our work and the Transfer Problem literature is that the latter considers exogenous wealth transfers, while wealth transfers are generated endogenously in our model as a result of a tightening of the portfolio constraint. The direction of such a transfer (to or from the Periphery countries) in response to a tightening or a loosening of the constraint depends on the form of a constraint.

The intuition behind the occurrence of the wealth transfers in our model is simple. Assume for a moment that there is no constraint. Then each country holds the same portfolio. When a (binding) constraint is imposed on the investors in the Center, their portfolio has to deviate from the benchmark, and now the portfolios of the Center and Periphery investors differ. This means that stock market price movements will have differential effects on the investors’ wealth. The movements of wealth obviously depend on the type of the constraint. We detail them for the case of a concentration constraint below. For any constraint which binds, however, one can say that the distribution of wealth will fluctuate. Moreover, since the Periphery countries hold identical portfolios, their wealth moves in tandem. That is, the resolution of uncertainty always affects the Periphery countries in the same way: they either both become poorer or both become richer relative to the Center. Whether they become poorer or richer depends on which portfolio gains more: that of the Periphery countries or that of the Center.

To put all pieces of the above discussion together and re-iterate the mechanism, assume that for given a constraint, there is a shock such that wealth of the Center goes up relative to wealth of the two Periphery countries. Because consumption expenditures are proportional to wealth, this shock implies that the Center increases its consumption on all goods, but because of the home bias in consumption, the increase the in demand for the Center good is relatively bigger than that of the demand on the two Periphery goods. This implies that there is an increase in the relative demand of the Center vis-à-vis the Periphery goods. The two Periphery countries suffer a reduction in wealth, which means that they reduce their demands for all goods. The Periphery countries have a home bias in consumption as well, so the drop in the demand for Periphery goods is relatively of reparations payments demanded of Germany after World War I (see Keynes (1929) and Ohlin (1929)). Keynes argued that the payments would result in a reduction of the demand for German goods and cause a deterioration of the German terms of trade, making the burden on Germany much higher than the actual value of the payments. On the other hand, Ohlin’s view was that the shift in demand would have no impact on relative prices. This implication would be correct if all countries have the exact same demands (in our model this requires an assumption that \(\alpha_i = 1/3, i = 0, 1, 2 \)).
larger than that for the Center good. Hence, the price of the Center good increases relative to all other goods.

There exists ample empirical evidence documenting contagion among the exchange rates or the terms of trade of emerging markets (Periphery countries, in our model).17 We offer a simple theory in which this contagion arises as a natural consequence of (endogenous) wealth transfers due to financial market frictions.

The portfolio constraint also generally induces the co-movement between the stock markets of the Periphery countries. This co-movement may be partially confounded by the Center good price effect, which is of the same nature as the one encountered in the case of the demand shifts in the benchmark model (see Section 2). Consider, for example, a response to a positive shock in λ. While the improving terms of trade effect boosts the Periphery stock markets, the associated downward move in p_0 may potentially offset this. However, given our Condition A3, the latter effect is dwarfed by the improvement in the terms of trade. If we were to quote stock market prices of the Periphery in terms of the production basket of Center, rather than the world consumption basket, the two Periphery markets would always co-move in response to a tightening or a loosening of the portfolio constraint. On the other hand, the response of the stock market of the Center is unambiguous and goes in opposite direction of λ, reflecting the effects of an implicit wealth transfer to or from the Center. So, in summary, the implicit wealth transfers due to the portfolio constraint create an additional co-movement among the terms of trade of the Periphery countries, as well as their stock market prices, while reducing the co-movement between the Center and the Periphery stock markets.

4. Contagion without Trade

The previous section have dealt with a model in which the Periphery countries are trading in goods among themselves as much as with the Center country, in that the expenditure shares of Periphery country 1 on the Center and on the other Periphery country goods are identical. In practice, however, emerging markets trade with industrialized economies much more than amongst themselves. Moreover, recent empirical studies of emerging markets have cast doubt on the ability of trade relationships to generate international co-movement of observed magnitudes and have

17See, for example, Kaminsky and Schmukler (2002) and Rigobon (2002).
documented that contagion exists even among countries with insignificant trade relationships.\(^\text{18}\) How much trade there is between Russia and Brazil? Since the movements in the terms of trade is an essential ingredient of the contagion mechanism in our model, it is natural to ask whether our results still hold under alternative assumptions regarding the extent of trade (in goods) between the Periphery countries. In this section we take our setting to the limit and show that even when Periphery countries do not trade at all, their stock markets will co-move as described in the baseline analysis.

To examine this scenario, we modify the countries’ preferences as follows:

\[
\begin{align*}
 u_0(C^0_0, C^1_0, C^2_0) &= \log C^0_0(t), \\
 u_1(C^0_1, C^1_1, C^2_1) &= (1 - \alpha_1(t)) \log C^0_1(t) + \alpha_1(t) \log C^1_1(t), \\
 u_2(C^0_2, C^1_2, C^2_2) &= (1 - \alpha_2(t)) \log C^0_2(t) + \alpha_2(t) \log C^2_2(t).
\end{align*}
\]

That is, we assume that the goods produced by the Periphery countries are non-traded. Moreover, the only trade occurring in the model is that between each Periphery country and the Center. We continue to assume that there is a home bias in consumption by restricting \(\alpha_i\) to be a martingale lying between 1/2 and 1. The Center country faces a portfolio constraint of a general form \(f(x_0(t)) \leq 0\).

Under this specification, the terms of the trade of each Periphery country with the Center are

\[
q^j(t) = \frac{\alpha_j(t)\lambda_j(t)}{1 + \lambda_1(t)(1 - \alpha_1(t)) + \lambda_2(t)(1 - \alpha_2(t))} \frac{Y^0(t)}{Y^j(t)}, \quad j \in \{1, 2\},
\]

where the relative weights \(\lambda_1\) and \(\lambda_2\) are possibly stochastic. It is straightforward to show that the expressions for the stock prices remain the same, given by (16)–(18).

In the interest of space, we do not provide the dynamics of the terms of trade and stock prices in this economy; we just present a table (Table 3) that mimics Table 2 of Section 3. In contrast to Table 2, only two signs in Table 3 are ambiguous; the remaining implications do not require any further conditions. The effects of the demand shocks on the terms of trade are now clear-cut because a demand shift in a Periphery country 1 not only increases the world demand for good 1 relative to all other goods (as before), but also decreases the demand for good 0, while leaving the demand for good 2 unchanged. Therefore, the price of good 0 drops relative to that of both goods 1 and 2. Another set of signs that becomes unambiguous is that for the effects of the innovation

\(^{18}\)See Kaminsky, Reinhart, and Végh (2003), Broner, Gelos, and Reinhart (2004), and Rigobon (2003).
Table 3: Terms of trade and stock returns in the economy with portfolio constraints and no trade between the Periphery countries. \(A \) stands for “ambiguous.”

in the wealth shares of the Periphery countries captured by \(\lambda \) on the stock prices in the Periphery.

As mentioned in Section 3 and then elaborated in Appendix B, the impact of \(\lambda \) may be viewed as a combination of two effects: (i) the impact of a change in \(\lambda \) (the implied wealth transfer) on the demand for good 0 and (ii) the cross-country demand reallocation in the Periphery countries. The former effect is always negative – hence the drop in the stock price of the Center. The latter effect is simply not present in the current framework: the demand reallocations in the Periphery countries exactly cancel each other. As a results, portfolio constraints always increase the co-movement between the Periphery countries’ stock markets and always reduce the co-movement between the Periphery and the Center.

Within this economy it is easy to derive the real exchange rates faced by the Periphery countries.

Remark 1 (Real Exchange Rates). The price indexes in each country, derived from the countries’ preferences, are given by

\[
P^0(t) = p^0(t), \quad P^1(t) = \left(\frac{p^0(t)}{1 - \alpha_1(t)} \right)^{1-\alpha_1(t)} \left(\frac{p^1(t)}{\alpha_1(t)} \right)^{\alpha_1(t)}, \quad P^2(t) = \left(\frac{p^0(t)}{1 - \alpha_2(t)} \right)^{1-\alpha_2(t)} \left(\frac{p^1(t)}{\alpha_2(t)} \right)^{\alpha_2(t)}.
\]

The real exchange rates, expressed as functions of the terms of trade, are then

\[
e^j(t) = \frac{P^j(t)}{P^0(t)} = (1 - \alpha_j(t))^{\alpha_j(t)} \left(q^j(t) \right)^{\alpha_j(t)}, \quad j \in \{1, 2\}.
\]

Our primary concern is the incremental effect of a change in \(\lambda \) on the real exchange rates, as in the first column of Table 3. Since the utility weights \(\alpha_j \) are positive, the real exchange rates respond to a change in \(\lambda \) in the same direction the terms of trade do. This implies that the excess co-movement in the terms of trade due to the portfolio constraint translates into the excess co-movement of the real exchange rates of the Periphery countries.
5. An Example: A Portfolio Concentration Constraint

The purpose of this section is to illustrate the applicability of our general framework to studying specific portfolio constraints. Under a specific constraint, we can fully characterize the countries’ portfolios and hence identify the direction of the constraint-necessitated wealth transfers. This will allow us to address questions of the following nature, “Does a positive shock in the Center entail a wealth transfer to the Center?”, “How does the origin of a shock affect stock returns worldwide?”

Here, we return to our workhorse model presented in Section 2 and specialize function \(f(\cdot) \) to represent perhaps the most prevalent investment restriction: a portfolio concentration constraint. That is, the resident of the Center country now faces a constraint permitting him to invest no more than a certain fraction of his wealth \(\gamma \) into the stock markets of countries 1 and 2:

\[
x_0^{S_1}(t) + x_0^{S_2}(t) \leq \gamma, \quad \gamma \in (0, 1).
\]

(23)

While we think this constraint is reasonable, we do not intend to argue that such a constraint is necessarily behind the patterns of correlations observed in reality. Our goal is to merely illustrate the workings of our model. We feel that (23) is particularly well-suited for this purpose, since its impact on the portfolio composition is easy to understand.\(^{19}\)

For the concentration constraint, we can fully characterize the process \(\lambda \) and hence the remaining equilibrium quantities. Note that the consumption allocations, terms and trade, and stock prices all depend on the primitives of the model and the unknown stochastic weights. Therefore, once the process \(\lambda \) and the constants \(\lambda_1(0) \) and \(\lambda_2(0) \) are determined, we would be able to pin down all of these equilibrium quantities. It follows from (6), (9), and Lemma 1 that

\[
\lambda(t) = \frac{y_0 \xi_0(t)}{y_1 \xi(t)}.
\]

Recall that due to the portfolio constraint, the Center country and the Periphery face different state price densities, \(\xi_0 \) and \(\xi \), respectively. In particular, the (constrained) Center country’s effective interest rate and the market price of risk, \(r_0 \) and \(m_0 \), are tilted so as to reflect the extent to which the country’s investments are constrained. Applying Itô’s lemma, and using the definitions of \(\xi \)

\(^{19}\)We concede that other constraints, especially government-imposed, may be more economically relevant, but leave their investigation for future research. Another set of restrictions absent from the model is those on the Periphery countries. The model possesses sufficient flexibility to accommodate these alternative constraints, but we leave this analysis, as well as a serious calibration, for future applications and mainly focus on economic mechanisms underlying our framework.
and ξ_0 from (3) and (8), we obtain
\[
d\lambda(t) = \lambda(t)[r(t) - r_0(t) + m(t)^T(m_0(t) - m(t))]dt - \lambda(t)(m_0(t) - m(t))^T dw(t). \tag{24}
\]
Substituting this dynamics into the expressions in Proposition 2, we have the following representation for the volatility matrix of the stock returns, σ:
\[
\sigma(t) = \begin{bmatrix}
-X_\lambda(t) & -X_{\alpha_1}(t) & -X_{\alpha_2}(t) & \beta & 1-\beta & \frac{1-\beta}{2} \\
A(t) - X_\lambda(t) & a(t) - X_{\alpha_1}(t) & b(t) - X_{\alpha_2}(t) & \beta & 1-\beta & \frac{1-\beta}{2} \\
\bar{A}(t) - X_\lambda(t) & \bar{a}(t) - X_{\alpha_1}(t) & \bar{b}(t) - X_{\alpha_2}(t) & \beta & 1-\beta & \frac{1-\beta}{2} \\
\end{bmatrix}
\begin{bmatrix}
(m(t) - m_0(t))^T \\
\sigma_{\alpha_1}(t)^T \\
\sigma_{\alpha_2}(t)^T \\
M(t)\sigma_{\gamma}(t)i_0^T \\
M(t)q_1(t)\sigma_{\gamma_1}(t)i_2^T \\
M(t)q_2(t)\sigma_{\gamma_2}(t)i_2^T \\
\end{bmatrix} \tag{25}
\]
where $i_0 \equiv (1, 0, 0)^T$, $i_1 \equiv (0, 1, 0)^T$, and $i_2 \equiv (0, 0, 1)^T$. The 3×3 matrix σ represents the loadings on the three underlying Brownian motions w^0, w^1, and w^2 of the three stocks: S^0 (captured by the first row of σ), S^1 (the second row), and S^2 (the third row). In the benchmark unconstrained economy or at times when the constraint is not binding, all countries face the same state price density, and hence the market price of risk $m_0(t)$ coincides with $m(t)$, and the matrix σ coincides with its counterpart in the benchmark unconstrained economy.

The final set of equations, required to fully determine the volatility matrix in the economy with portfolio constraints, is presented in the following proposition.

Proposition 3. If equilibrium exists, the equilibrium market price of risk processes faced by the Center and the Periphery are related as follows:

When \[(i_1 + i_2)^T(\sigma(t)^T)^{-1}m(t) \leq \gamma, \tag{26}\]
\[
m_0(t) = m(t), \quad \psi(t) = 0, \quad (\text{Constraint not binding}),
\]
otherwise,
\[
m_0(t) = m(t) - (\sigma(t))^{-1}(i_1 + i_2)\psi(t), \tag{27}
\]
\[
\psi(t) = -\frac{\gamma - (i_1 + i_2)^T(\sigma(t)^T)^{-1}m(t)}{(i_1 + i_2)^T(\sigma(t)\sigma(t)^T)^{-1}(i_1 + i_2)} > 0, \quad (\text{Constraint binding}),
\]

where \(\sigma(t) \) is given by (25). Furthermore,

\[
\sigma_{Y0}(t) = \frac{\left(\lambda_1(t) \left(\frac{1-\alpha_1(t)}{2} \right) + \lambda_2(t) \left(\frac{1-\alpha_2(t)}{2} \right) \right) \beta_{\alpha_1(t)}(t) - \beta_{\alpha_2(t)}(t)}{\alpha_0 + \lambda_1(t) \left(\frac{1-\alpha_1(t)}{2} \right) + \lambda_2(t) \left(\frac{1-\alpha_2(t)}{2} \right)}
\]

\[
= X_\lambda(t)(m(t) - m_0(t)) + X_{\alpha_1(t)}(\sigma_{\alpha_1(t)}(t) + X_{\alpha_2(t)}(\sigma_{\alpha_2(t)}(t) + \frac{1-\beta}{2} M(t)(q^1(t) + q^2(t)))\sigma_{Y0}(t) i_0
\]

\[
- \frac{1-\beta}{2} M(t)q^1(t)\sigma_{Y0}(t)i_1 - \frac{1-\beta}{2} M(t)q^2(t)\sigma_{Y0}(t)i_2 + m_0(t).
\]

Equations (26)–(27) are the complementary slackness conditions coming from the constrained portfolio optimization of the resident of the Center. Equation (28) is the direct consequence of market clearing in the consumption goods. Together, (26)–(28) allow us to pin down the equilibrium market prices of risk of Center and Periphery, and hence the responses of all three stock markets to innovations in the underlying Brownian motions \(w^0, w^1, \) and \(w^2 \), as functions of the state variables in the economy. Once the market prices of risk processes \(m_0 \) and \(m \) are determined, it is straightforward to compute the effective interest rate differential faced by the Center country (Proposition 4), which completes our description of the dynamics of the process \(\lambda \) in (24). This, together with the countries’ portfolio holdings reported in Corollary 1, concludes the full characterization of the economy.

Proposition 4. If equilibrium exists, the differential between the interest rates faced by countries 1 and 2 and that effectively faced by country 0 is given by

\[
r(t) - r_0(t) = \frac{\gamma - (i_1 + i_2)^\top(\sigma(t)^\top)^{-1}m(t)}{(i_1 + i_2)^\top(\sigma(t)^\top)^{-1}(i_1 + i_2)} \gamma.
\]

From (26)–(27) and (29), one can easily show that the interest rate differential is always nonpositive. That is, the interest rate effectively faced by the Center country is higher than the world (unconstrained) interest rate. This accounts for the effects of the portfolio constraints. Recall from Section 2.2 that the optimization problem of the Center subject to the portfolio constraint is formally equivalent to an auxiliary problem with no constraints but the Center facing a fictitious investment opportunity set in which the bond and the Center’s stock (the unrestricted investments) are made more attractive relative to the original market, and the stocks of the Periphery countries (the restricted investments) are made relatively less attractive (Cvitanić and Karatzas (1992)). In this fictitious market, the Center optimally invests more in the bond and in the Center’s stock relative to the original market, and less in the Periphery countries’ stocks.

We now turn to analyzing the equilibrium prices in our economy. The (unique) solution to equations (26)–(28) is best illustrated by means of a graph. We chose the parameters such that
supply shocks dominate the stock price dynamics in the unconstrained economy. The parameters used in the analysis are summarized in Table 4. All time-dependent variables in Table 4 are the state variables in our model. In the interest of space, in our figures we fix all of them but the wealth shares of the Periphery countries $\lambda_1(t)$ and $\lambda_2(t)$. These stochastic wealth shares are behind the additional common factor driving the stock prices and terms of trade that we identify in our model, and it is of interest to highlight the dependence of the prices and portfolios in our model on these wealth shares. Hence, the horizontal axes in all the figures are λ_1 and λ_2.

The reasoning behind the choice of these parameters is the following. So far we have assumed that the Periphery countries are small, so for the choice of the numeraire consumption basket we decided that they represent 5 percent of the world. We have chosen 75 percent as the share of expenditures on the domestic good, which is a conservative estimate, given the share of the service sector in GDP. In terms of output, the Periphery countries are one tenth of the Center, and twice as volatile. We assume that the wealth ratios relative to the Center for both Periphery countries may range from 0.1 to 0.35, and finally, we assume that the demand shocks only depend on domestic productivity shocks. That is, we assume that there is a shift in the preference toward the domestic good when there is a positive supply shock at home.\footnote{We have repeated the analysis using different coefficients and have found that the main message remained unaltered—in so far as the supply shocks dominated the dynamics of asset prices in the unconstrained economy. Remember that the demand shocks have the “divergence property;” they introduce negative correlation among countries’ stock prices. Because in our model, the demand shocks are a function of the supply shocks, we can parameterize it so that the supply effect is the one that dominates.} Using these parameters we compute the region where the constraint is binding, the prices, and the responses of the terms of trade and stock prices to the different shocks.

To develop initial insight into the solution we examine the region where the constraint is binding. The tightness of the constraint is measured by the multiplier ψ from equations (26) and (27). As is
evident from Figure 1, for small wealth shares of the Periphery countries, the portfolio constraint is not binding, and the multiplier is zero. As their wealth shares increase the constraint tightens: the multiplier is increasing in both λ's. In the unconstrained economy, larger λ's imply that Periphery countries constitute a larger fraction of world market capitalization, and hence, they command a larger share of the investors’ portfolios. Therefore, given the same upper bound constraint on the investment on the Periphery countries, the larger these countries are, the tighter the constraint.

![Figure 1: Value of the multiplier on the portfolio constraint ψ.](image)

Let us now concentrate on how the portfolio constraint affect portfolio decisions by the investors in the Center. Figure 2 depicts the changes in portfolio weights relative to the unconstrained economy: the “excess” weight in the Center country is shown in panel (a), and the “excess” weight in the Periphery country 1 is shown in panel (b).\(^{21}\) For the range of λ's over which the constraint is not binding, the portfolio holdings are identical to those in the unconstrained equilibrium. For the range in which it becomes binding, the investor in the Center is forced to decrease his holdings of the Periphery markets. The freed-up assets get invested in the stock market of the Center country and the bond, making the Center country over-weighted in the Center stock market relative to its desired unconstrained position. Of course, the Periphery countries take the offsetting position so that the securities markets clear. In other words, the portfolio constraint forces a “home bias” on the Center and the Periphery investors. As we will demonstrate, this “home bias” implies that the wealth of the investor in the Center is more sensitive to shocks to the Center stock market, while the wealth of the Periphery investors is relatively more susceptible to shocks to the Periphery.

\(^{21}\)In our parametrization the Periphery countries are symmetric, and therefore we only show figures for one of the countries.
Figure 2(a): Incremental fraction of wealth of the Center in the Center’s stock market.

Figure 2(b): Incremental fraction of wealth of the Center in one of the Periphery countries’ stock market.

The portfolio constraint also makes the bond a more attractive investment opportunity from the viewpoint of the investor in the Center. As shown in Proposition 4, the effective interest rate faced by the Center is higher than that faced by the unconstrained Periphery countries. While in the unconstrained economy the Center does not demand any shares of the bond, in the constrained economy the demand in positive. To convince the Periphery to take an offsetting position, in equilibrium the world interest rate r must fall. Now the Periphery countries are short in the bond, and the Center country, whose effective interest rate is higher, takes a long position.

5.0.1. Transfer Problem, Amplification and Flight to Quality

The next goal is to analyze how the distribution of wealth evolves in response to shocks in the three countries. From equation (24) we have computed the diffusion term in the evolution of λ’s—the wealth shares of the Periphery countries, which appears in Figure 2. (Recall that the two are perfectly correlated.) Figure 2a depicts the move in these wealth shares when the Center receives a positive shock, and Figure 2b shows what happens to it when a shock originates in one of the Periphery countries. Again, because of symmetry we only consider one of the Periphery countries. The response of the wealth share of the Periphery countries clearly depends on the origin of the shock: a shock in the Center depresses the share (a wealth transfer from the Periphery to the Center), while a shock in the Periphery increases it (a wealth transfer from the Center to the Periphery). To understand this effect, consider the representation of the evolution of λ in terms of the countries portfolio:

$$
\frac{d\lambda(t)}{\lambda(t)} = \text{Drift terms} \ dt + \left(\frac{dS^0(t)}{S^0(t)}, \frac{dS^1(t)}{S^1(t)}, \frac{dS^2(t)}{S^2(t)} \right) (x_i(t) - x_0(t)), \quad i = 1, 2, \quad (30)
$$
which follows from (24) and Proposition 4. The portfolios are the same over a range where the constraint is not binding, and hence no wealth transfers take place. In the constraint-binding range, the first component of the vector \(x_i(t) - x_0(t)\) is negative, while the last two are positive. (This is because the investor in the Center (Periphery) is over-weighted (under-weighted) in the Center’s stock market and under-weighted (over-weighted) in the Periphery stock markets.) As we argued in Section 2, although country-specific shocks spread internationally inducing co-movement, the effect of a shock on own stock market is bigger than on the remaining markets (because of divergence). Then, a positive shock to the Center benefits disproportionately more the investor who is over-weighted in the Center’s stock market (the Center’s investor), and a shock to the Periphery the ones who are over-weighted in the Periphery markets (the Periphery investors).

One interesting aspect of the model is that wealth transfers are endogenous to the constraint. A tighter constraint implies larger transfers; a looser constraint implies smaller transfers, and in the limit when the constraint is not binding, there are not wealth transfers whatsoever. As will be evident from Figures 4 and 5, the ensuing effects of the transfers on the terms of trade and the stock prices become larger when the constraint is tighter.

![Figure 3(a): The effects of a shock in the Center](image)

![Figure 3(b): The effects of a shock in the Periphery](image)

Figure 4 simply confirms the intuition we gathered from the Transfer Problem. Since a shock to the Center causes a drop in both \(\lambda\)’s and hence a wealth transfer to the Center, its terms of trade with the rest of the world should improve. Likewise, a shock to a Periphery country leads to an increase in \(\lambda\)’s and necessitates a wealth transfer to the two Periphery countries, and hence their terms of trade improve.
The incremental effect on the stock prices, brought about by the portfolio constraint, mimics the effects on the terms of trade. A country experiencing an improvement of its terms of trade enjoys an increase in its stock market, and that experiencing a deterioration sees its stock drop. Now we can fully address the issue of the co-movement among the stock markets that the portfolio constraint induces. These results are presented in Figures 5a through 5e. Figure 5a demonstrates the impact that a shock to the Center has on the Center’s stock market, beyond the already positive effect that takes place in the unconstrained economy. In the unconstrained region the effect is zero, but it is positive elsewhere. That is, the effect of a shock to the Center is amplified in the presence of the constraint. Furthermore, the magnitude of the effect increases with the \(\lambda \)’s, which is to be expected because the higher the wealth shares of the Periphery countries are, the tighter the constraint. The exact same intuition applies to the effects of the shocks in the Periphery on domestic stock prices (Figure 5d).

The transmission of shocks across countries is depicted in Figures 5b, 5c, and 5e. The impact of a productivity shock in the Center on the Periphery stock prices is shown in Figure 5b, that of a shock in a Periphery country on the Center in Figure 5c and, finally, that of a shock in one Periphery country on the other Periphery country in Figure 5e. Again, these are incremental effects due to the constraint, net of co-movement implied by the unconstrained model. The emerging pattern is consistent with the flight to quality and contagion effects, observed in the data. The flight to quality and contagion refer to a transmission pattern where a negative shock to one of the Periphery countries (emerging markets) is bad news to other countries in the Periphery, but good news for the Center country (an industrialized economy). Figures 5c-e demonstrate that in our model a negative shock to one of the Periphery countries reduces its stock price, decreases the price of the
other Periphery country (contagion), and increases the price in the Center (flight to quality). A similar pattern occurs if the Center receives a positive shock.

Figure 5(a): The incremental effects of a shock in the Center dw^0 on the Center’s stock return dS^0.

Figure 5(b): The incremental effects of a shock in the Center dw^0 on a Periphery country’s stock return dS^1.

Figure 5(c): The incremental effects of a shock in the Periphery dw^1 on the Center’s stock return dS^0.

Figure 5(d): The incremental effects of a shock in the Periphery dw^1 on a Periphery country’s stock return dS^1.

34
6. Concluding Remarks

Empirical literature has highlighted the importance of financial market imperfections in generating contagion. We have examined a form of such imperfections, portfolio constraints, in the context of a three-country Center-Periphery economy. We have shown that a portfolio constraint gives rise to an additional common factor in the dynamics of the asset prices and the terms of trade, which reflects the tightness of the constraint. Countries in our model are differentially affected by the new factor: the co-movement of the terms of trade and the stock markets of the Periphery countries increases, while the co-movement of the Center country with the rest of the world decreases. These results are consistent with the empirical findings documenting contagion among the stock prices and the exchange rates or the terms of trade of countries belonging to the same asset class.22 Our finding may also shed light on why stocks markets of emerging economies are less correlated with those of the industrialized countries than otherwise expected. However, to better investigate this question, one needs to extend our model beyond three countries, so that one could draw a distinction between an asset class subject to an institutionally imposed constraint (a set of Periphery countries) and an asset class that is not (the remaining Periphery countries).

The workings of the portfolio constraint in our model are easily understood once one recognizes that portfolio constraints give rise to (endogenous) wealth transfers to or from the Periphery coun-

22One such example is Mexico whose correlation with other Latin American countries dropped by a half when its debt got upgraded from non-investment grade to investment grade (Rigobon (2002)). Other examples include Malaysia, Indonesia, and Thailand whose debt got downgraded during the 1997 Asian crisis, resulting in a sharp increase of the correlation of their stock markets amongst themselves, as well as with Latin American markets.
tries. From that point on, one can appeal to the classic Transfer Problem to understand how the constraint affects the terms of trade. Making use of the positive relationship between the terms of trade and the stock prices in our model, one can then fully describe the responses of countries’ stock markets to a tightening of the portfolio constraint. We thus provide a theoretical framework in which changes in the wealth share of the constrained investors affect stock returns and the degree of stock price co-movement. Our insight regarding the effects of wealth transfers applies more generally: any portfolio rebalancing should be associated with a wealth transfer, and hence the intuition behind the “portfolio channel of contagion” (see e.g., Broner, Gelos, and Reinhart (2004)) can be alternatively represented as the outcome of cross-country wealth transfers, like in our constrained equilibrium. Furthermore, our model predicts that wealth of financially constrained investors enters as a priced factor in stock returns: this prediction is yet to be tested empirically.

Within a simple example featuring on a portfolio concentration constraint, we find that constraints in our model generate an amplification effect and a flight to quality in stock prices. However, the example does not necessarily produce a realistic pattern in international capital flows. This is likely to be due to a specific nature of the constraint. The framework developed in our paper can be easily applied to study alternative investment restrictions, government- or institutionally-imposed: for example, borrowing constraints, or special provisions such as margin requirements, VaR, and collateral constraints. For all of these financial market imperfections, equilibrium can be characterized in closed form. These alternative financial constraints may entail interesting and realistic patterns in cross-country capital flows.

Other potential extensions of the framework include explicit modeling of the production decisions by firms and the incorporation of non-tradable goods. Additionally, in this paper, we did not focus on the home bias and the uncovered interest rate parity puzzles, which would be interesting to address. Another aspect left for future research is the quantitative assessment of our findings: in particular, a serious calibration and an examination of the business cycle properties of our model.

This paper is an example of how constraints in financial markets may have an impact on real markets, through affecting prices of the traded goods. In future research, it would be of interest to expand on this feature of the model and examine the effects of financial market imperfections on the patterns of production and trade, the competitiveness of firms, and technological innovation. Alternatively, it may be valuable to examine how restrictions in real markets—for example, trade barriers—affect asset prices and their co-movement.
Appendix A: Proofs

Proof of Lemma 1. It follows from the existing literature (e.g., Karatzas and Shreve (1998)) that \(W_0(t) \) and \(W_i(t), i = 1, 2 \), have representations
\[
W_0(t) = \frac{1}{\xi_0(t)} E \left[\int_t^T \xi_0(s) \left(p^0(s)C_0^0(s) + p^1(s)C_1^0(s) + p^2(s)C_2^0(s) \right) ds \right| \mathcal{F}_t]
\]
\[
W_i(t) = \frac{1}{\xi(t)} E \left[\int_t^T \xi(s) \left(p^0(s)C_0^i(s) + p^1(s)C_1^i(s) + p^2(s)C_2^i(s) \right) ds \right| \mathcal{F}_t], \quad i = 1, 2.
\]
These expressions, combined with equations (6) and (9), yield
\[
W_0(t) = \frac{T - t}{y_0 \xi_0(t)}, \quad W_i(t) = \frac{T - t}{y_i \xi(t)}, \quad i = 1, 2.
\]
Making use of the first-order conditions (6) and (9), we arrive at the statement of the lemma.

Proof of Corollary 1. This is a standard result for logarithmic preferences over a single good (e.g., Karatzas and Shreve (1998, Ch. 6, Example 4.2)). The modification of the standard argument for the case of multiple goods is simple thanks to Lemma 1. In particular, we can equivalently represent the objective function of country 0 in the form
\[
E \int_0^T \left[\alpha_0 \log \left(\frac{W_0(t)}{p^0(t)(T - t)} \right) + \frac{1 - \alpha_0}{2} \log \left(\frac{W_0(t)}{p^1(t)(T - t)} \right) + \frac{1 - \alpha_0}{2} \log \left(\frac{W_0(t)}{p^2(t)(T - t)} \right) \right] dt
\]
\[
= E \int_0^T \left[\log W_0(t) - \alpha_0 \log(p^0(t)(T - t)) - \frac{1 - \alpha_0}{2} \log(p^1(t)(T - t)) - \frac{1 - \alpha_0}{2} \log(p^2(t)(T - t)) \right] dt.
\]
Since the investor of country 0 takes prices in the good markets \(p^j, j = 0, 1, 2 \) as given, and hence from his viewpoint the last three terms in the integrand are exogenous, this objective function belongs to the family considered by Karatzas and Shreve. A similar argument applies to investors 1 and 2. Q.E.D.

Weights in the Planner’s Problem. To conform with the competitive equilibrium allocation, the weights \(\lambda_1 \) and \(\lambda_2 \) in the planner’s problem in Section 2 are chosen to reflect the countries’ initial endowments. Since we normalized the weight of Country 0, \(\lambda_0 \), to be equal to 1, the weights of the two remaining countries \(i = 1, 2 \) are identified with the ratios of Lagrange multipliers associated with the countries’ Arrow-Debreu (static) budget constraint \(y_i/y_0, i = 1, 2 \), respectively. (This follows from the first-order conditions with respect to, for example, good 0 (6) and (9) combined with the sharing rules for good 0 (11)). The values of \(\lambda_1 \) and \(\lambda_2 \) are inferred from Lemma 1 and the sharing rules (12)–(13) combined with the model assumption that the initial endowments of countries 1 and 2 are given by \(W_i(0) = S^i(0), i = 1, 2 \), and substituting pertinent quantities from (6), (9), and (17)–(18).

Lemma 2. In the economy with portfolio constraints, stock prices are given by
\[
S^0(t) = p^0(t)Y^0(t)(T - t), \quad S^1(t) = p^1(t)Y^1(t)(T - t), \quad \text{and} \quad S^2(t) = p^2(t)Y^2(t)(T - t).
\]
Proof of Lemma 2. Absence of arbitrage implies that

\[S^j(t) = \frac{1}{\xi(t)} E \left[\int_t^T \xi(s)p^j(s)S^j(s)ds \right| \mathcal{F}_t, \quad j = 0, 1, 2. \]

(A.1)

It follows from (6) and (11) that

\[\frac{1 - \alpha_1(t)}{y_1p^0(t)\xi(t)} = \frac{1 - \alpha_1(t)}{\alpha_0 + \lambda_1(t)\frac{1 - \alpha_1(t)}{2} + \lambda_2(t)\frac{1 - \alpha_2(t)}{2}}, \]

where \(\lambda_1 \) and \(\lambda_2 \) are constant weights in the unconstrained economy of Section 2 and stochastic in the constrained economy of Section 3. Hence, in equilibrium

\[p^0(t)\xi(t) = \frac{\alpha_0 + \lambda_1(t)\frac{1 - \alpha_1(t)}{2} + \lambda_2(t)\frac{1 - \alpha_2(t)}{2}}{y_1\lambda_1(t)Y^0(t)} \]

\[= \frac{1}{y_1Y^0(t)} \left(\alpha_0 \frac{1}{\lambda_1(t)} \frac{1 - \alpha_1(t)}{2} + \frac{1 - \alpha_2(t)\lambda_2(t)}{\lambda_1(t)} \right) \]

\[= \frac{1}{y_1Y^0(t)} \left(\alpha_0 \frac{1}{\lambda_1(t)} \frac{1 - \alpha_1(t)}{2} + \frac{1 - \alpha_2(t)\lambda_2(t)}{\lambda_2(t)} \right) \]

(A.2)

Analogous steps can be used to derive that

\[p^1(t)\xi(t) = \frac{1}{y_1Y^1(t)} \left(\frac{1 - \alpha_0}{2} \frac{1}{\lambda_1(t)} + \alpha_1(t) + \frac{1 - \alpha_2(t)\lambda_2(t)}{\lambda_2(t)} \right) \]

\[= \frac{1}{y_1Y^2(t)} \left(\frac{1 - \alpha_0}{2} \frac{1}{\lambda_1(t)} + \frac{1 - \alpha_1(t)}{2} + \frac{1 - \alpha_2(t)\lambda_2(t)}{\lambda_2(t)} \right) \]

(A.3)

Making use of the assumption that \(\alpha_1 \) and \(\alpha_2 \) are martingales, from (A.1)–(A.3) we obtain

\[S^0(t) = \frac{p^0(t)y_1\lambda_1(t)Y^0(t)}{\alpha_0 + \lambda_1(t)\frac{1 - \alpha_0(t)}{2} + \lambda_2(t)\frac{1 - \alpha_2(t)}{2}} E \left[\int_t^T \frac{1}{y_1} \left(\alpha_0 \frac{y_1}{\lambda_1(s)} \frac{1 - \alpha_1(s)}{2} + \frac{1 - \alpha_2(s)\lambda_2(s)}{\lambda_2(s)} \right) ds \right| \mathcal{F}_t \]

\[= \frac{p^0(t)\lambda_1(t)Y^0(t)}{\alpha_0 + \lambda_1(t)\frac{1 - \alpha_1(t)}{2} + \lambda_2(t)\frac{1 - \alpha_2(t)}{2}} \left(E \left[\int_t^T \frac{1}{y_1} \lambda_1(s) ds \right| \mathcal{F}_t \right) - \frac{1}{\lambda_1(t)(T - t)} \]

\[= \frac{p^0(t)Y^0(t)(T - t) + \alpha_0p^0(t)\lambda_1(t)\frac{1 - \alpha_1(t)}{2} + \lambda_2(t)\frac{1 - \alpha_2(t)}{2}}{\alpha_0 + \lambda_1(t)\frac{1 - \alpha_0(t)}{2} + \lambda_2(t)\frac{1 - \alpha_2(t)}{2}} \left(E \left[\int_t^T \frac{1}{\lambda_1(s)} ds \right| \mathcal{F}_t \right) - \frac{1}{\lambda_1(t)(T - t)} \].

An analogous argument can be used to show that

\[S^1(t) = p^1(t)Y^1(t)(T - t) + \frac{1 - \alpha_0}{2} + \lambda_1(t)\frac{1 - \alpha_1(t)}{2} + \lambda_2(t)\frac{1 - \alpha_2(t)}{2} \left(E \left[\int_t^T \frac{1}{\lambda_1(s)} ds \right| \mathcal{F}_t \right) - \frac{1}{\lambda_1(t)(T - t)} \],

\[S^2(t) = p^2(t)Y^2(t)(T - t) + \frac{1 - \alpha_0}{2} + \lambda_1(t)\frac{1 - \alpha_1(t)}{2} + \lambda_2(t)\frac{1 - \alpha_2(t)}{2} \left(E \left[\int_t^T \frac{1}{\lambda_1(s)} ds \right| \mathcal{F}_t \right) - \frac{1}{\lambda_1(t)(T - t)} \].
Note that the term $E \left[\int_t^T \frac{1}{\lambda_1(s)} \, ds \bigg| \mathcal{F}_t \right] - \frac{1}{\lambda_1(t)}(T - t)$ enters the expression for each stock symmetrically. Therefore, at any time t, the prices of all stocks in the economy are either above or below the value of their dividends, augmented by the factor $T - t$:

$$S^j(t) \leq p^j(t)Y^j(t)(T - t) \quad \text{if} \quad E \left[\int_t^T \frac{1}{\lambda_1(s)} \, ds \bigg| \mathcal{F}_t \right] - \frac{1}{\lambda_1(t)}(T - t) \leq 0,$$

$$S^j(t) \geq p^j(t)Y^j(t)(T - t) \quad \text{if} \quad E \left[\int_t^T \frac{1}{\lambda_1(s)} \, ds \bigg| \mathcal{F}_t \right] - \frac{1}{\lambda_1(t)}(T - t) \geq 0, \quad j = 0, 1, 2,$$

where we have used the restrictions that $0 < \alpha_i < 1/3$, $\lambda_i > 0$, and $Y^i > 0$, $i = 0, 1, 2$, at all times.

On the other hand, from bond market clearing we have that

$$W_0(t) + W_1(t) + W_2(t) = S^0(t) + S^1(t) + S^2(t)$$

and from Lemma 1 and market clearing for goods 0, 1 and 2 that

$$\frac{1}{p^0(t)} \left(\frac{\alpha_0 \lambda_1(t)}{T - t} \right) = Y^0(t), \quad (A.8)$$

$$\frac{1}{p^1(t)} \left(\frac{\alpha_1 \lambda_1(t)}{T - t} \right) = Y^1(t), \quad (A.9)$$

$$\frac{1}{p^2(t)} \left(\frac{\alpha_2 \lambda_1(t)}{T - t} \right) = Y^2(t) \quad (A.10)$$

Hence, by multiplying (A.8), (A.9) and (A.10) by $p^0(t)$, $p^1(t)$ and $p^2(t)$, respectively, and adding them up, we can show that

$$W_0(t) + W_1(t) + W_2(t) = p^0(t)Y^0(t)(T - t) + p^1(t)Y^1(t)(T - t) + p^2(t)Y^2(t)(T - t).$$

This, together with (A.6) yields the required result. Q.E.D.

Proof of Propositions 1 and 2. Since our proofs of the two propositions follow analogous steps, we present them together.

We first report the quantities $A(t)$, $\tilde{A}(t)$, $a(t)$, $\tilde{a}(t)$, $b(t)$, $\tilde{b}(t)$, $M(t)$, X_{α_1}, and X_{α_2} omitted in the body of Section 2:

$$A(t) \equiv \frac{\left(\alpha_0 \alpha_1(t) - \frac{1-\alpha_0}{2} \frac{1-\alpha_1(t)}{2} \right)}{\left(\alpha_0 + \lambda_1(t) \frac{1-\alpha_1(t)}{2} + \lambda_2(t) \frac{1-\alpha_2(t)}{2} \right)} \lambda_1(t) + \frac{1-\alpha_2(t)}{2} + \frac{3\alpha_0 - 1}{2} \lambda_2(t) \quad (A.11)$$

$$\tilde{A}(t) \equiv \frac{\left(\alpha_0 \alpha_2(t) - \frac{1-\alpha_0}{2} \frac{1-\alpha_2(t)}{2} \right)}{\left(\alpha_0 + \lambda_1(t) \frac{1-\alpha_1(t)}{2} + \lambda_2(t) \frac{1-\alpha_2(t)}{2} \right)} \lambda_2(t) + \frac{1-\alpha_1(t)}{2} + \frac{3\alpha_0 - 1}{2} \lambda_1(t) \quad (A.12)$$

$$a(t) \equiv \frac{\lambda_1(t)}{2} \left(\alpha_0 + \lambda_1(t) \frac{1-\alpha_1(t)}{2} + \lambda_2(t) \frac{1-\alpha_2(t)}{2} \right) + \frac{1-\alpha_0}{2} + \lambda_1(t) \lambda_1(t) + \lambda_2(t) \frac{1-\alpha_2(t)}{2} \lambda_2(t) \quad (A.13)$$

39
\(\bar{a}(t) \equiv \frac{\lambda_1(t)}{2} \left(\frac{1-3\alpha_1}{2} + \frac{1-3\alpha_2(t)}{2} \lambda_2(t) \alpha_2(t) \right) \), (A.14)

\(\bar{b}(t) \equiv \frac{\lambda_2(t)}{2} \left(\frac{1-3\alpha_1}{2} - \frac{1-3\alpha_2(t)}{2} \lambda_1(t) \right) \), (A.15)

\(\bar{b}(t) \equiv \frac{\lambda_2(t)}{\alpha_0 + \lambda_1(t) \frac{1-\alpha_2}{2} + \lambda_2(t) \frac{1-\alpha_2}{2}} + \frac{\lambda_2(t)}{1-\alpha_0 + \lambda_1(t) \alpha_1(t) + \lambda_2(t) \frac{1-\alpha_2}{2}} \), (A.16)

\(M(t) \equiv 1 - \frac{1}{2} \frac{M(t)}{\beta + \frac{1-\beta}{2} q^1(t) + \frac{1-\beta}{2} q^2(t)} \), \(X_{\lambda_1} \equiv 1 - \frac{\beta}{2} M(t)(q^1(t)\alpha(t) + q^2(t)\bar{a}(t)) \), \(X_{\alpha_2} \equiv 1 - \frac{\beta}{2} M(t)(b(t)q^1(t) + \bar{b}(t)q^2(t)) \) (A.17)

These expressions are the same across Propositions 1 and 2, except that in Proposition 1 \(\lambda_i(t) \) are constant weights.

To demonstrate that \(\lambda_1(t) \) and \(\lambda_2(t) \) are the same up to a multiplicative constant, we use (6), (9), and Lemma 1 to conclude that

\[\lambda_1(t) = \frac{y_0\xi_0(t)}{y_1\xi(t)} \quad \text{and} \quad \lambda_2(t) = \frac{y_0\xi_0(t)}{y_2\xi(t)}. \]

The result then follows from the observation that \(y_1 \) and \(y_2 \) are constants.

Taking logs in (14) we obtain

\[\log q^1(t) = \log \frac{\alpha_0 + \lambda_1(t) \frac{1-\alpha_0}{2} + \lambda_2(t) \frac{1-\alpha_0}{2}}{\lambda_1(t) \alpha_1(t) + \lambda_2(t) \frac{1-\alpha_0}{2}} + \log Y^0(t) - \log Y^1(t), \]

Applying Itô’s lemma to both sides and simplifying, we have

\[\frac{dq^1(t)}{q^1(t)} = \text{Itô terms} \quad dt + \left(\frac{1}{2} \lambda_1(t) \alpha_1(t) + \lambda_2(t) \frac{1-\alpha_0}{2} \right) \left(\lambda_1(t) \alpha_1(t) \frac{d\lambda_1(t)}{\lambda_1(t)} + \lambda_1(t) d\alpha_1(t) - \frac{\lambda_2(t)}{2} d\alpha_2(t) \right) \]

\[+ \lambda_2(t) \frac{1-\alpha_2}{2} \frac{d\lambda_2(t)}{\lambda_2(t)} - \frac{1}{2} \left(\frac{1}{\lambda_1(t)} \alpha_1(t) + \lambda_2(t) \frac{1-\alpha_0}{2} \right) \left(\lambda_1(t) \frac{1-\alpha_1(t)}{2} \frac{d\lambda_1(t)}{\lambda_1(t)} \right) \]

\[- \frac{\lambda_1(t)}{2} d\alpha_1(t) + \lambda_2(t) \frac{1-\alpha_2(t)}{2} \frac{d\lambda_2(t)}{\lambda_2(t)} - \lambda_2(t) \frac{1-\alpha_2(t)}{2} \frac{d\lambda_2(t)}{\lambda_2(t)} \]

\[+ \frac{dY^0(t)}{Y^0(t)} - \frac{dY^1(t)}{Y^1(t)}. \]

Substituting \(\frac{d\lambda_1(t)}{\lambda_1(t)} = \frac{d\lambda_2(t)}{\lambda_2(t)} = \frac{d\alpha_1(t)}{\alpha_1(t)} \) in the expression above, simplifying, and making use of (1) and the definitions in (A.11–A.18), we arrive at the statement in the propositions. Of course, in Proposition 1, \(d\lambda_1(t) = d\lambda_2(t) = 0 \), and hence the terms involving \(d\lambda_1(t) \) and \(d\lambda_2(t) \) drop out. The dynamics of \(q^2 \) are derived analogously.

To derive the dynamics of \(S^0 \), we restate (16)–(18) as

\[\log S^0(t) = -\log \left(\beta + \frac{1-\beta}{2} q^1(t) + \frac{1-\beta}{2} q^2(t) \right) + \log Y^0(t) + \log(T-t) \]

\[\log S^j(t) = \log q^j(t) - \log \left(\beta + \frac{1-\beta}{2} q^1(t) + \frac{1-\beta}{2} q^2(t) \right) + \log Y^j(t) + \log(T-t) \]
Applying Itô’s lemma to both sides of (A.19)-(A.20), we arrive at

\[\frac{dS^0(t)}{S^0(t)} = \text{Drift terms } dt - \frac{1-\beta}{\beta + 1-\beta q^1(t) + \frac{1-\beta}{2} q^2(t)} \left(q^1(t) \frac{dq^1(t)}{q^1(t)} + q^2(t) \frac{dq^2(t)}{q^2(t)} \right) + \frac{dY^0(t)}{Y^0(t)}, \]

\[\frac{dS^j(t)}{S^j(t)} = \text{Drift terms } dt + \frac{dq^j(t)}{q^j(t)} - \frac{1-\beta}{\beta + 1-\beta q^1(t) + \frac{1-\beta}{2} q^2(t)} \left(q^1(t) \frac{dq^1(t)}{q^1(t)} + q^2(t) \frac{dq^2(t)}{q^2(t)} \right) + \frac{dY^j(t)}{Y^j(t)}. \]

Substituting the dynamics of \(q^1 \) and \(q^2 \) derived above and making use of the definitions in (A.11)–(A.18) we arrive at

\[(A.21) \]

\[\frac{\alpha_0}{y_0 p^0(t) \xi_0(t)} = \frac{\alpha_0 Y^0(t)}{\alpha_0 + \lambda_1(t) \frac{1-\alpha_1(t)}{2} + \lambda_2(t) \frac{1-\alpha_2(t)}{2}}. \]

Applying Itô’s lemma to both sides of (A.21) and equating the ensuing diffusion terms, we arrive at the statement in the Proposition. Q.E.D.

Proof of Proposition 3. Equations (26) and (27) are derived at a partial equilibrium level. The partial-equilibrium constrained optimization problem of country 0 closely resembles the problem solved in Teplá (2000). Teplá considers a borrowing constraint, which in our setting is equivalent to \(x_0^0(t) + x_0^s(t) + x_0^s(t) \leq \gamma \). Our constraint does not contain the first, \(x_0^s(t) \), term. It is straightforward to modify Teplá’s derivation for the case of our constraint. Our problem is even simpler, because we consider logarithmic preferences.

Equation (28) follows from market clearing, coupled with the investors’ first-order conditions. It follows from, for example, (6) and (11) that

\[(A.21) \]

\[\frac{\alpha_0}{y_0 p^0(t) \xi_0(t)} = \frac{\alpha_0 Y^0(t)}{\alpha_0 + \lambda_1(t) \frac{1-\alpha_1(t)}{2} + \lambda_2(t) \frac{1-\alpha_2(t)}{2}}. \]

Applying Itô’s lemma to both sides of (A.21) and equating the ensuing diffusion terms, we arrive at the statement in the Proposition. Q.E.D.

Proof of Proposition 4. Interest rate differential. This result again involves a modification of the derivation in Teplá (2000). Q.E.D.

Appendix B: Sign Implications in Tables 1 and 2

Due to the restrictions \(\alpha_i \in (1/3, 1) \) and \(\beta \in (0, 1) \), the quantities \(A(t), \tilde{A}(t), a(t), \tilde{b}(t), M(t), X_\lambda(t), X_{\alpha_1}(t), \) and \(X_{\alpha_2}(t) \) are all unambiguously positive. We also have

\[\tilde{a}(t) < 0 \iff \frac{1-\alpha_0}{2} - \alpha_0 < \left(\frac{1-\alpha_2(t)}{2} - \alpha_2(t) \right) \lambda_2(t) \]

\[\tilde{b}(t) < 0 \iff \frac{1-\alpha_0}{2} - \alpha_0 < \left(\frac{1-\alpha_1(t)}{2} - \alpha_1(t) \right) \lambda_1(t) \]

It follows from Propositions 1 and 2 that the effect of demand shift in country 1 (2) on the terms of trade in country 2 (1) is negative iff \(\tilde{a}(t) < 0 \) (\(\tilde{b}(t) < 0 \)), which are the conditions in our Condition A1. Deriving the signs of the responses of the stock prices to the demand shifts is then straightforward, given the characterization in Propositions 1 and 2. Condition A2, the rationale for which is given in the body of Section 2, provides a sufficient condition for the effects to result in the signs reported in Tables 1 and 2.
The effects of a change in λ on the terms of trade of each Periphery country are positive because $A(t) > 0$ and $\tilde{A}(t) > 0$—guaranteed by the assumption that $\alpha_i \in (1/3, 1)$ (home bias in consumption).

We now derive an alternative form of Condition A3 and elaborate on the intuition behind it. It follows from Proposition 2 that the impact of the constraint (the effect of a change in λ) on the stock prices of the Periphery countries is positive iff (20)–(20) hold. Notice that if $A(t) < \tilde{A}(t)$, condition (21) is trivially satisfied, and if $A(t) > \tilde{A}(t)$, (20) is the one that is trivially satisfied. This means that, in general, only one of the conditions needs to be checked. If we assume that $A(t) < \tilde{A}(t)$, then a sufficient condition for both effects to be positive is that (20) is satisfied. The condition guaranteeing that $A(t) < \tilde{A}(t)$ is

$$\frac{3\alpha_1(t) - 1}{3\alpha_2(t) - 1} < \frac{\lambda_2(t)}{\lambda_1(t)}.$$ \hspace{1cm} (A.22)

After some algebra and using the fact that $\alpha_1(t) > 1/3$ one can show that (20) is satisfied when

$$\alpha_1(t)\lambda_1(t) + \frac{1 - \alpha_2(t)}{2} \lambda_2(t) > \frac{1 - \beta Y_0(t)}{\beta Y_2(t)} \left(\frac{3\alpha_2(t) - 1}{3\alpha_0 - 1} \lambda_2(t) - \frac{3\alpha_1(t) - 1}{3\alpha_0 - 1} \lambda_1(t) \right).$$ \hspace{1cm} (A.23)

This is a sufficient condition guaranteeing that Condition A3 is satisfied. The left hand side of equation (A.23) represents the direct effect of lambda (the wealth transfer, as explained in Section 3) on the relative price of good 1. The terms on the right-hand side represent the two indirect effects: (i) the impact of the drop in the demand for good 0, and (ii) the impact of the cross-country demand reallocation in the Periphery countries. To clarify the intuition it is simpler to think of a change in λ as a wealth transfer.

First, let us close the cross-country demand reallocation effects in the Periphery so as to concentrate on the first effect. To do so, assume total symmetry throughout the Periphery ($\alpha_1 = \alpha_2$ and $\lambda_1 = \lambda_2$). An increase in λ increases wealth of both Periphery countries by the same proportion, while reducing wealth of the Center. The drop in wealth in the Center implies a drop in demand for all goods by the consumer in the Center. However, because of the home bias in consumption, the drop in the demand for good 0 is larger than that for each of the remaining goods. On the other hand, due to the wealth transfer, the Periphery will now increase its demand. But again, because of the home bias in consumption, the increase in demand results in a larger increase in the demand for the Periphery’s goods than for the Center’s good. The net effect is that the demand for the Periphery goods increases while the demand of the Center good decreases. Hence, the price of good 0 falls. Due to the symmetry assumption, prices of the two Periphery goods increase, and do so by exactly the same proportion. The weighted average of the three prices in the numeraire basket is, of course, has to stay equal to one. Now recall the expressions for stock prices from Lemma 2. Since the price of good 0 decrease and the prices of goods 1 and 2 increase unambiguously, the Center’s stock falls while the Periphery stocks rise. In this case, the direct effect dominates the indirect effect in that both stock prices in the Periphery increase. Second, let us introduce the cross-country demand reallocation effects in the Periphery and explore what happens when the demands of the Periphery countries differ. Since the Periphery enter the demand with the exact same expenditure shares, the drop in the Center’s demand for the two goods is identical. Furthermore,
the wealth shares of the Periphery countries increase proportionally. The differences arise because the expenditure share of Periphery country 1 on good 2 is different from that of Periphery 2 on good 1. These cross-country demands could make the impact on prices of the two goods differ. For instance, assume that the consumer in Periphery country 1 has an expenditure share of its good \(\alpha_1 \) close to 1/3, while the consumer in Periphery country 2 has an expenditure share \(\alpha_2 \) close to 1. In this case, the wealth transfer to country 1 will increase its demand for good 2 by almost as much that for good 1. However, the exact same wealth transfer to country 2 affects primarily its demand for good 2, with the demand for good 1 increasing by a only a small fraction. This means that the increase in the demand for good 2 is larger than that one for good 1. What is the net effect? The demand for good 0 goes down unambiguously, and in this example, the demand for both goods 1 and 2 goes up unambiguously, but more so for good 2 than good 1. The price of good 0 clearly falls. At the same time, the price of the good with the highest demand increase goes up (that would be good 2 in this example). So, it follows from Lemma 2 that \(S^0 \) falls, while \(S^2 \) rises. However, since the price of the numeraire basket has to be unity (and hence the weighted sum of changes in all prices has to be zero), it may happen that in absolute terms the price of good 1 goes down even though it increases relative to good 0. In that case, \(S^1 \) falls. To prevent this from happening one of the two conditions need to hold: (i) the numeraire basket has a high weight on good 0, or (ii) the changes in the demand for good 1 and good 2 are close. Indeed, the condition (A.23) is always satisfied when (i) \(\beta \) is sufficiently close to one or (ii) \(\frac{3\alpha_2(t)-1}{3\alpha_0-1}\lambda_2(t) \) is close to \(\frac{3\alpha_1(t)-1}{3\alpha_0-1}\lambda_1(t) \). The second condition is always satisfied in the model developed in Section 4, where the Periphery countries do not demand each other’s goods, implying that the cross-demand effects are not present (and hence the prices of the Periphery good always change by the same proportion). Therefore, for any numeraire, the impact of \(\lambda \) on the Periphery stock markets is always unambiguous.
References

