Margin-Based Asset Pricing and Deviations from the Law of One Price

Nicolae Gârleanu
Berkeley, CEPR, and NBER

Lasse H. Pedersen
NYU, CEPR, and NBER

Motivation: Margin-Based Asset Pricing and LoOP

- All agents face margin constraints
- These constraints can become binding; e.g., since 2007:
 - Many traditional liquidity providers have become forced sellers
 - Interest-rate spreads increased dramatically
 - Central banks have actively tried to facilitate funding
- One remarkable consequence: Failure of Law of One Price
 - Corporate-bond basis: price gap between bond and CDS
 - Covered interest-rate parity
- Key question: How do margins affect asset prices?
What We Do

- Standard Lucas economy, extended in minimal way:
 - with 2 two agents
 - facing margin constraints
- Derive equilibrium
- Quantify effects of margin
- Addressing the ability to explain:
 - CDS-bond basis
 - Failure of covered interest-rate parity (CIP)
 - The pricing of the Fed’s lending facilities
 - The incentive for regulatory arbitrage

Results: Theory

- (C)CAPM adjusted for margin constraints
 \[E_t(r^i) - r^C_t = \lambda_t^{i} \beta_t^i + \psi_t x_t m_t^i \]
- Shadow cost of capital \(\psi_t \) can be captured by
 - interest-rate spreads (LIBOR minus GC repo).
- Binding constraints, \(\psi_t > 0 \) (e.g., since August 2007):
 - occur following bad fundamental shocks
 - increase Sharpe market ratio: \(SR = \hat{SR} + f(x_t) \left(\frac{SR}{\hat{SR}} - \frac{1}{m} \right)^i \)
- Basis: can arise due to difference in margins
 \[E_t(r^i) - E_t(r^k) = \left(\beta_t^{C,i} - \beta_t^{C,k} \right) + \psi_t (m_t^i - m_t^k) \]
- High-margin assets have high sensitivity to funding risk
Results: Applications

- Calibrate model using standard parameters: consumption growth, discount rate, risk aversion, observed margins
 - Large pricing effect of binding constraints
 - Collateralized interest rates drop
 - Interest-rate spreads blow out
 - Margin premium rises
 - High margin assets have high sensitivity to funding risk
 - higher beta
 - higher comovement with each other
- Consistent with model, CDS-bond basis related to:
 - credit tightness (time series)
 - relative margin requirements (cross section)
- Relate interest-rate spread to failure of covered interest parity
- Transmission of unconventional monetary policy:
 - Compute effect of Fed’s lending facilities on asset values
- Quantify banks’ incentives to loosen capital requirements

Related Literature

- Direct evidence from Fed that bids depend significantly on haircuts: Ashcraft, Garleanu, and Pedersen (2009)
Model: Assets

- Continuous-time endowment economy
- Multiple assets in positive supply, characterized by
 - dividend stream: δ_t^i
 - margin requirement: m_t^i
 - endogenous price: $dP_t^i - \left(\mu_t^i P_t^i - \delta_t^i \right) dt + P_t^i (\sigma_t^i)^\top dB_t$
- Multiple "derivatives":
 - derivative i_k has the same payoffs δ_t^i as asset i
 - smaller margin: $m_t^k < m_t^i$
- Two types of risk-free lending/borrowing:
 - collateralized (rate r_t^c)
 - uncollateralized (rate r_t^u)

Model: Agents

- Two types of agents $g = a, b$:
 - Risk averse: $\gamma^a > 1$
 - Risk tolerant (brave): $\gamma^b = 1$ (i.e., log)
- Utility: constant relative risk aversion
 \[
 \max_{C^g, \theta^g, \eta^g} E_0 \int_0^\infty e^{-\rho s} \frac{\left(C_s^g \right)^{1-\gamma^g}}{1 - \gamma^g} ds
 \]
- Constraints:
 - Solvency: $W_t \geq 0$
 - Funding constraint: $\sum_i m_t^i |\theta_t^i| + \eta_t^u \leq 1$
 - Agent a
 - Does not lend uncollateralized
 - Faces derivative-trading restrictions
Shadow Cost of Capital

Agent b solves

$$\max_{\theta_t^b, m_t^i} \left\{ \frac{r_t^b + \eta_t^b (r_t^u - r_t^c) + \sum_i \theta_t^b (\mu_t^i - r_t^c) - \frac{1}{2} \sum_{i,j} \theta_t^b \theta_t^i \sigma_t^i (\sigma_t^i)^\top}{\sum_i m_t^i |\theta_t^i| + \eta_t^b} \right\}$$

subject to $\sum_i m_t^i |\theta_t^i| + \eta_t^b \leq 1$.

Proposition: The shadow cost of the margin constraint is

$$\psi_t = r_t^u - r_t^c$$

Proposition: If agent b is long asset i, its excess return is

$$\mu_t^i - r_t^c = \beta_t^{C, i} \psi_t m_t^i$$

where $\beta_t^{C, i} = \text{cov}_t \left(\frac{dC}{C}, \frac{dP^i}{P^i} \right)$

CCAPM with Margins

Suppose that agent a is unconstrained w.r.t. asset i and let

$$\frac{1}{\gamma_t} = \frac{1}{\gamma^a} \frac{C_t^a}{C_t} + \frac{1}{\gamma^b} \frac{C_t^b}{C_t}$$

$$x_t = \frac{C_t^b}{\gamma^b} + \frac{C_t^a}{\gamma^a}$$

$$\beta_t^{C, i} = \text{cov}_t \left(\frac{dC}{C}, \frac{dP^i}{P^i} \right)$$

Proposition:

$$\mu_t^i - r_t^c = \gamma_t \beta_t^{C, i} + x_t \psi_t m_t^i$$
CAPM with Margins

Let q be the portfolio with highest correlation with aggregate consumption and

$$
\beta^i_t = \frac{\text{cov}_t \left(\frac{dP^i}{P^i}, \frac{dP^q}{P^q} \right)}{\text{var}_t \left(\frac{dP^q}{P^q} \right)}
$$

Proposition:

$$
\mu^i_t - r^c_t = \lambda_t \beta^i_t + x_t \psi_t m^i_t
$$

Basis Trades

Proposition:

- If agent b is long asset i and derivative i_k

$$
\mu^i_t - \mu^{i_k}_t = \psi_t \left(m^i_t - m^{i_k}_t \right) \mid \left(\beta_t^{C^b,i} - \beta_t^{C^b,i_k} \right)
$$

- If he is long i and short i_k, then

$$
\mu^i_t - \mu^{i_k}_t = \psi_t \left(m^i_t + m^{i_k}_t \right) + \left(\beta_t^{C^b,i} - \beta_t^{C^b,i_k} \right)
$$

- The derivative price P^{i_k} decreases with m^{i_k}.
Explicit Equilibrium

Specializing the setup for tractability to consider explicit equilibrium and calibration:

- Aggregate consumption C is geometric Brownian motion
- Continuum of underlying assets with dividend $\delta^i = Cs^i$, where s^i independent martingales
- All underlying assets have the same margin $m^i = m$
- Derivatives with $m^k \leq m$ traded only by b

Solving Explicitly

- It suffices to calculate equilibrium as if there were one underlying paying C and derivatives on it
- State variables: C and $c^b = C^b / C$
- Pricing kernel for underlying assets: Agent a is marginal:
 \[
 \xi_t = e^{-\rho t} (C^a)^{-\gamma^a} \\
 d\xi_t = \xi_t \left(\mu^\xi dt + \sigma^\xi dw_t \right)
 \]
- Collateralized interest rate:
 \[
 r^\xi_t = -\mu^\xi = -\frac{D \left(e^{-\rho t} (C^a)^{-\gamma^a} \right)}{e^{\rho t} (C^a)^{-\gamma^a}}
 \]
- Market price of aggregate wealth $P_t = C_t \zeta (c^b_t)$:
 \[
 P_t \xi_t = E_t \int_t^\infty C_s \xi_s ds
 \]
Solution

Proposition:

- Agent b's margin constraint binds iff
 \[\frac{\mu - r^c}{\sigma^2} = \frac{SR}{\sigma} \geq \frac{1}{m} \]

- The price-to-dividend ratio $P_t/C_t - \zeta(c_t^b)$ is given as the solution to an ODE and all other endogenous variables are explicit functions of ζ.

- Binding margin constraint increases the Sharpe Ratio:
 \[SR = \tilde{SR} + \frac{x}{1-x} \frac{\tilde{\sigma}}{1 - \frac{\zeta c^b}{m\zeta}} \left(\frac{SR}{\tilde{\sigma}} - 1 \right)^+ \]
 where $\tilde{SR} = \gamma \sigma^C$ and $\tilde{\sigma}$ are the Sharpe and return volatility without constraints.

Limit Basis

Proposition:

As $c^b \to 0$, the basis between asset i and derivative i_k becomes
\[\mu^i - \mu^{i_k} = \psi(m^i - m^{i_k}) \]
where
\[\psi = \frac{(\sigma^C)^2}{m} \left(\gamma^a - \frac{1}{m} \right)^+ \]
In the cross section of asset-derivative pairs,
\[\frac{\mu^i - \mu^{i_k}}{m^i - m^{i_k}} = \frac{\mu^j - \mu^{i_k}}{m^j - m^{i_k}} \]
Calibration: Parameters

- We use the following parameter values

<table>
<thead>
<tr>
<th>μ^C</th>
<th>σ^C</th>
<th>γ^a</th>
<th>ρ</th>
<th>m</th>
<th>m^{med}</th>
<th>m^{low}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.03</td>
<td>0.08</td>
<td>8</td>
<td>0.02</td>
<td>0.4</td>
<td>0.3</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- Constraint binds for $c^b \leq 0.22$
- Since b is levered more than a, low c^b is the result of bad shocks to fundamentals

Calibration: Interest Rates

Figure: Interest rates: complete markets, collateralized with constraints (r^C), and uncollateralized with constraints (r^U).
Calibration: Bases

![Graph showing return spreads of high-margin underlying versus low-margin derivative](image)

Figure: Return spreads of high-margin underlying versus low-margin derivative (i.e., large margin spread $m_{\text{underlying}} - m_{\text{low}} = 30\%$) and versus intermediate-margin derivative (i.e., small margin spread $m_{\text{underlying}} - m_{\text{medium}} = 10\%$).

Calibration: Sharpe Ratios

![Graph showing Sharpe ratios](image)

Figure: Sharpe ratios: complete markets, underlying with constraints, and two derivatives with constraints.
Calibration: Price Premium

![Graph showing the price premium](image)

Figure: Price Premium. The figure shows how the price premium, \(\frac{P_{\text{derivative}}}{P_{\text{underlying}}} - 1 \), for three derivatives with identical cash flows and different margins.

Monetary Policy and Lending Facilities

- **Term Auction Facility (TAF)** – December 2007
- **Term Securities Lending Facility (TSLF)** – March 2008
- **Term Asset-Backed Securities Loan Facility (TALF)** – November 2008

Goal: Improve funding conditions and “help market participants meet the credit needs of households and small businesses by supporting the issuance of asset-backed securities”

The model suggests that when the Fed offers lower margins, required returns go down:

\[
E(r^{\text{Fed}}) - E(r^{\text{no Fed}}) \approx \psi(M^{\text{Fed}} - m^{\text{Fed}}) < 0
\]

- I.e., ABS prices go up, and access to credit eases, helping the real economy
Evidence on Monetary Policy and Margins Affecting Prices (Ashcraft, Garleanu, and Pedersen (2009))

Figure: Bid for Super-Senior CMBS with Fed Funding above Cash Bid.

Figure: Market reaction to TALF-related announcements.

N. Găreanu and L. H. Pedersen Margin-Based Asset Pricing
Figure: The CDS-Bond basis, the LIBOR-GC repo Spread, and Credit Standards.

Figure: Investment Grade (IG) and High Yield (HY) CDS-Bond Bases, Adjusted for Their Margins.
Figure: Average Deviation from Covered-Interest Parity and the TED Spread.

- Pressure to free capital by moving assets off the balance sheet or titling portfolios towards low capital-requirement assets
- Basel requirement is similar to the margin constraint
 \[\sum_i m^{\text{Reg}, i | \psi^i} \leq 1 \]
- Required return increased by \(m^{\text{Reg}, i | \psi^i} \)
Conclusion

• Margin-based general-equilibrium model
 • Strong asset pricing predictions
 • Predicts that a decline in fundamentals leads to
 • Binding constraints
 • Drop in Treasury and GC repo rates
 • Spikes in interest-rate spreads, risk premium, margin premium
 • Basis between securities with identical cash flows, related to margin differences

• Calibrated model predicts large margin premium in crisis

• Applications:
 • CDS-bond basis
 • Covered interest parity
 • Monetary policy, fed lending facilities
 • Banks’ incentives to use off-balance-sheet instruments