Human Capital and the Wealth of Nations

Rodolfo E. Manuelli and Ananth Seshadri*

Department of Economics
University of Wisconsin-Madison

July, 2006

Abstract

No question has perhaps attracted as much attention in the economics literature as “Why are some countries richer than others?” In this paper, we revisit the development problem and reevaluate the role of human capital. The key difference between our paper and recent work in this area is that we use theory to estimate the stocks of human capital, and that we allow the quality of human capital to vary across countries. When quality differences are allowed, we find that effective human capital per worker varies substantially across countries.

As a result of this finding, we estimate that cross-country differences in Total Factor Productivity (TFP) are significantly smaller than those reported in previous studies. Moreover, our model implies that output per worker is highly responsive to differences in TFP and in demographic variables.

*We thank Gary Becker, Ed Green, Jim Heckman, Bart Hobijn, Chad Jones, Larry Jones, John Kennan, Pete Klenow, Bob Lucas, Ellen McGrattan, Kevin Murphy, Ed Prescott and Richard Rogerson for comments. We are grateful to the NSF and Wisconsin Alumni Research Foundation for generous financial support.
1 Introduction

No question has perhaps attracted as much attention in the economics literature as “Why are some countries richer than others?” Much of the current work traces back to Solow’s classic work (1956). Solow’s seminal paper suggested that differences in the rates at which capital is accumulated could account for differences in output per capita. More recently, following the work of Lucas (1988), human capital disparities were given a central role in the analysis of growth and development. However, the best recent work on the topic reaches the opposite conclusion. Klenow and Rodriguez-Clare (1997), Hall and Jones (1999) and Parente and Prescott (2000) follow Bils and Klenow (2000a) and argue that most of the cross country differences in output per worker are not driven by differences in human capital (or physical capital); rather they are due to differences in a residual, total factor productivity (TFP).

In this paper we revisit the development problem. In line with the earlier view, we find that factor accumulation is more important than TFP to explain relative incomes. The key difference between our work and previous analyses is in the measurement of human capital. The standard approach — inspired by the work of Mincer (1974) — takes estimates of the rate of return to schooling as building blocks to directly measure a country’s stock of human capital. Implicitly, this method assumes that the marginal contribution to output of one additional year of schooling is equal to the rate of return. One problem with this procedure is that it is not well suited to handle cross-country differences in the quality of human capital. Following the pioneering work of Becker (1964) and Ben-Porath (1967), we model human capital acquisition as part of a standard income maximization problem. Our set up is flexible enough so that individuals can choose the length of the schooling period — which we identify as a measure of the quantity of human capital — and the amount of human capital per year of schooling and post-schooling training, which we view as a measure of quality. We use evidence on schooling and age-earnings profile to determine the parameters of the human capital production function. We then compute stocks of human capital as
the output of this technology, evaluated at the (individually) optimal choice of inputs given the equilibrium prices. Thus, we use theory — disciplined by observations — to indirectly estimate the stocks of human capital in each country.

We calibrate the model to match some moments of the U.S. economy and, following the standard development accounting approach, we compute the levels of TFP that are required to explain the observed cross-country differences in output per worker. We restrict our analysis to steady states. According to the model, relatively modest (of at most 27%) differences in TFP across countries suffice to explain the (large) observed differences in output per worker. Thus, TFP does not explain a large share —in the conventional way that this is estimated— of the differences in output per worker. Our result is mostly driven by our estimates of the average stocks of human capital and by the cross-country differences in demographic structure. We find that cross-country differences in average human capital per worker are much larger than suggested by recent estimates. Since the model matches actual years of education quite well, we conclude that it is differences in the quality of human capital that account for our findings.

We go beyond the development accounting exercise and compute the impact on a country’s output per worker of changes in any of the exogenous variables. We consider two exercises. First, we estimate the impact on (long run) output of an exogenous increase in TFP (holding demographic variables constant). We find that the resulting elasticity is fairly large: a 1% increase in (relative) TFP results in a 9% (long run) increase in (relative) output per worker. The second exercise is designed to evaluate the contribution of demographic characteristics to underdevelopment. In the model, countries differ in terms of life expectancy, retirement age and fertility. We conduct the following counterfactual experiment: we ‘endow’ each country with the demographic characteristics of the U.S. Then, we let individuals adjust their choices of physical and human capital. We find that this demographic change doubles the

\footnote{For an excellent review of the connection between demographics and growth, see Galor (2005).}
level of output in the poor country.\(^2\)

Even though we do not use estimates of a Mincer style regression to construct stocks of human capital, we show that the model generates estimated rates of return to schooling that are in the range of those observed in the data. Since international quality differentials in human capital play such an important role in explaining the variance of output per worker, we use the model to predict the path of earnings of an immigrant to the U.S. as a function of country of origin. We find that the model is fairly successful at reproducing the time path of income for immigrants in the U.S., given their level of schooling.

The baseline economy relies on differences in TFP and demographics to account for the variability in output per capita. This is an extreme view. It is well documented (see, for example, Chari, Kehoe and McGrattan (1997) and Hsieh and Klenow (2003)), that there are significant cross country differences in the relative price of capital. When we allow the price of capital to vary in the same way as in the data, our model predicts that to account for differences in output per worker no differences in TFP are needed.

Broadly speaking, our approach emphasizes a new dimension (quality of education) that helps explain differences across countries. In this sense it is related to a variety of papers. Chari, Kehoe and McGrattan (1997) rely on organization capital, Parente, Rogerson and Wright (2000) emphasize the role of home production, and Jeong and Townsend (2004) rely on market imperfections.

In section 2 we present the theoretical model. In section 3 we describe the calibration, and in section 4 we present the results. In section 5, we discuss the results and in section 6, we use the model to compute the implications for the return on schooling and for the relative income of immigrants. Section 7 presents some concluding comments.

\(^2\)When differences in demographics are ignored, the model predicts that the elasticity of output with respect to TFP is about 30% than in the base case.
2 The Model

In this section we describe the basic model, characterize its solution, and compute the implications for output per worker using the exogenously specified demographic structure.

2.1 The Individual’s Problem

The representative individual maximizes the present discounted value of net income. We assume that each agent lives for T periods and retires at age $R \leq T$. The maximization problem is

$$\max \int_{6}^{R} e^{-r(a-6)} [wh(a)(1-n(a)) - x(a)] da - x_E$$

subject to

$$\dot{h}(a) = z_h [n(a)h(a)]^{\gamma_1} x(a)^{\gamma_2} - \delta_h h(a), \quad a \in [6, R),$$

and

$$h(6) = h_E = h_B x_E^\nu$$

with h_B given. Equations (2) and (3) correspond to the standard human capital accumulation model initially developed by Ben-Porath (1967). This formulation allows for both market goods, $x(a)$, and a fraction $n(a)$ of the individual’s human capital, to be inputs in the production of human capital. Investments in early childhood, 5

5 The assumption of linear utility is without loss of generality. It can be shown that the solution to the income maximization problem is also the solution to a utility maximization problem when the number of children is given, parents have a bequest motive, and bequests are unconstrained. For details, see Manuelli and Seshadri (2005).

4 In particular, we assume that there are no external effects and attempt to see how far this takes us. A parallel could be drawn with Boldrin and Levine (2002) who argue that innovation can emerge as the equilibrium outcome of a perfectly competitive economy without externalities.

5 The emphasis on early childhood as one of the important determinants of human capital formation follows Carneiro, Cunha and Heckman (2003) who also specify a production technology in which goods and time invested by parents affect children’s human capital.
which we denote by x_E (e.g. medical care, nutrition and development of learning skills), determine the level of each individual’s human capital at age 6, $h(6)$, or h_E for short.\footnote{It should be made clear that market goods ($x(a)$ and x_E) are produced using the same technology as the final goods production function. Hence the production function for human capital is more labor intensive than the final goods technology.} Our formulation captures the idea that nutrition and health care are important determinants of early levels of human capital, and those inputs are, basically, market goods.\footnote{It is clear that parents' time is also important. However, given exogenous fertility, it seems best to ignore this dimension. For a full discussion see Manuelli and Seshadri (2005).}

There are two important features of our formulation. First, we assume that the human capital accumulation technology is the same during the schooling and the training periods. We resisted the temptation to use a more complicated parameterization so as to force the model to use the same factors to account for the length of the schooling period and the shape of the age-earnings profile. Second, we assume that the market inputs used in the production of human capital — $x(a)$ — are privately purchased. In the case of the post-schooling period, this is not controversial. However, this is less so for the schooling period. Here, we take the ‘purely private’ approach as a first pass.\footnote{An alternative explanation is that Tiebout like arguments effectively imply that public expenditures on education play the same role as private expenditures. The truth is probably somewhere in between.} In fact, for our argument to go through, it suffices that, at the margin, individuals pay for the last unit of market goods allocated to the formation of human capital.

The full solution to the income maximization problem, which to our knowledge is novel, is presented in the Appendix. The solution to the problem is such that $n(a) = 1$, for $a \leq 6 + s$. Thus, we identify s as years of schooling. The following proposition characterizes s.

Proposition 1 There exists a unique solution to the income maximization problem. The number of years of schooling, s, satisfies

\begin{align*}
\text{The number of years of schooling, } s, \text{ satisfies}
\end{align*}
1.

\[F(s) = \frac{h_B^{1-\gamma}}{z_h^{1-\nu} w^{\gamma_2-\nu(1-\gamma_1)}}. \]

(4)

where

\[
F(s) \equiv m(6 + s)^{1-\nu(2-\gamma)} e^{(1-\gamma)(\delta_h + \nu)s} \left(\frac{v}{r + \delta_h} \right)^{-(1-\gamma)\nu} \left(\frac{\gamma_2 \gamma_1^{(1-\gamma_2)}}{r + \delta_h} \right)^{(1-\nu)}
\]

\[
\left[1 - \frac{r + \delta_h (1 - \gamma_1)(1 - \gamma_2)}{\gamma_1} \frac{1 - e^{-\frac{\gamma_2 r + \delta_h (1-\gamma_1)}{\gamma_2 r + \delta_h (1-\gamma_2)}}}{m(s + 6)} \right]^{(1-\gamma)(1-\nu)(1-\gamma_1)},
\]

and

\[m(a) = 1 - e^{-(r+\delta_h)(R-a)}, \]

provided that

\[m(6)^{1-\nu(2-\gamma)} > \frac{h_B^{1-\gamma}}{z_h^{1-\nu} w^{\gamma_2-\nu(1-\gamma_1)}} \left(\frac{v}{r + \delta_h} \right)^{-(1-\gamma)\nu} \left(\frac{\gamma_2 \gamma_1^{(1-\gamma_2)}}{r + \delta_h} \right)^{(1-\nu)}. \]

Otherwise the privately optimal level of schooling is 0.

2. The level of human capital at the age at which the individual finishes his formal schooling is given by

\[
h(s + 6) = \left[\frac{\gamma_2 \gamma_1^{1-\gamma} z_h w^{\gamma_2}}{(r + \delta_h)^{\gamma}} \right]^{\frac{1}{\gamma}} \frac{\gamma_1}{r + \delta_h} m(6 + s)^{\frac{1}{1-\gamma}}
\]

(5)

Proof. : See the Appendix

There are several interesting features of the solution.

1. The Technology to Produce Human Capital and the Impact of Macroeconomic Conditions. The proposition illustrates the role played by economic forces in inducing a feedback from aggregate variables to the equilibrium choice of schooling. To be precise, had we assumed that market goods do not appear in the production of human capital (i.e. \(\gamma_2 = \nu = 0 \)), the model implies that changes in wage rates have no impact on schooling decisions. (See equation
Thus, the standard formulation that assumes that market goods are not used in the production of human capital has to rely on differences in interest rates or the working horizon as the only source of equilibrium differences in schooling across countries. Our formulation is flexible enough so that the impact of wages on equilibrium schooling is ambiguous. The reason is simple: Pre-schooling investments in human capital and schooling are substitutes; hence, depending on the productivity of market goods in the production of early childhood human capital relative to schooling human capital, increases in wages may increase or decrease schooling. To be precise, if ν is sufficiently high (and $\gamma_2 - \nu(1 - \gamma_1) < 0$), increases in market wages make parents more willing to invest in early childhood human capital. Thus, at age 6 the increase in human capital (relative to a low ν economy) is sufficiently large that investments in schooling are less profitable. In this case, the equilibrium level of s decreases. Even though theoretically possible, this requires extreme values of ν. In our parameterization $\gamma_2 - \nu(1 - \gamma_1) > 0$, and we obtain the more ‘normal’ response: high wage (and high TFP) economies are also economies with high levels of schooling. This is an important source of differences in the equilibrium years of schooling that individuals in different countries choose to acquire.

2. Development and Schooling Quality. The total impact of changes in wages (or TFP) on the stock of human capital at the end of schooling is given by totally differentiating (5).

$$\frac{dh(s + 6)}{dw} = \frac{\partial h(s + 6)}{\partial s} \frac{ds}{dw} + \frac{\partial h(s + 6)}{\partial w}.$$

The first term on the right hand side can be interpreted as the effect of changes in the wage rate on the quantity of human capital (years of schooling), while

9It is clear from the formulation that cross-country differences in z_h —ability to learn— and h_B —the endowment of human capital— can also account for differences in s. Since we have no evidence of systematic differences across countries, we do not pursue this possibility in this paper.
the second term captures the impact on the level of human capital per year of schooling, a measure of quality. Direct calculations (see equation (5)) show that the elasticity of quality with respect to the wage rate is \(\frac{\gamma_2}{1 - \gamma} \), which is fairly large in our preferred parameterization.\(^{10}\) This result illustrates one of the major implications of the approach that we take in measuring human capital in this paper: differences in years of schooling are not perfect (or even good in some cases) measures of differences in the stock of human capital. Cross-country differences in the quality of schooling can be large, and depend on the level of development. If the human capital production technology is ‘close’ to constant returns, then the model will predict large cross country differences in human capital even if TFP differences are small.\(^{11}\)

3. **Individual Characteristics, Schooling and Human Capital.** Individuals with higher ability—as measured by \(z_h \)—choose longer schooling periods. At the other end, high levels of initial human capital, \(h_B \), result in lower schooling. The model implies that even at age 6, there are differences in human capital among identical children that live in different countries due to differences in the cost (measured in wage units) of market goods needed to build early childhood capital. (See equation (32) in the Appendix.)

2.1.1 Equilibrium Age-Earnings Profiles

Even though the model is very explicit about market income and investments in human capital, it says very little about the timing of payments and who pays for what. In particular, during the post-schooling period it is necessary to determine who pays for the time and good costs associated with training. In order to define

\(^{10}\)To be precise, we find that \(\gamma_2 = 0.33 \), and \(\gamma = 0.93 \). Thus the elasticity of the quality of human capital with respect to wages is 4.71.

\(^{11}\)It can be shown that the elasticity of quality with respect to TFP is \(\frac{\gamma_2}{[(1 - \theta)(1 - \gamma)]} \), where \(\theta \) is capital share.
measured income at age a, $y(a)$ we assume that a fraction π of post-schooling expenses in market goods are paid for by employers, and subtracted from measured wages. Thus,

$$y(a) = wh(a)(1 - n(a)) - \pi x(a).$$

Given the solution to the income maximization problem (see equation (31) in the Appendix), measured income as a function of experience, defined as $p = a - s - 6$, and schooling, s, is

$$\hat{y}(s, p) = \left[\frac{\gamma_2 \gamma_1 z_h u^{\gamma_2}}{(r + \delta_h)^{\gamma}}\right] \frac{1}{1-\gamma} \left[\frac{\gamma_1 e^{-\delta_h} m (6 + s)^{\frac{1}{\gamma}}}{r + \delta_h} - \gamma_1 \frac{m (6 + s)^{\frac{1}{\gamma}}}{r + \delta_h} + \frac{e^{-\delta_h (p + 6 + s - R)}}{\delta_h} \int_{e^{\delta_h (6 + s - R)}}^{e^{\delta_h (p + 6 + s - R)}} [(1 - x) e^{-\delta_h x}] \frac{\gamma}{1-\gamma} \, dx\right].$$

The function $\hat{y}(s, p)$ summarizes the implications of the model for the age-earnings profile of an individual. In some sense, one could view this expression as the model’s analog of a Mincer-style relationship. However, it is necessary to exercise some caution in order to make this comparison. These are two important reasons why our set-up differs from the Mincerian framework.

First, unlike in Mincer’s theory, schooling is endogenous and varying s in $\hat{y}(s, p)$ can give rise to biased estimates.\(^\text{12}\) Thus, in the context of this model it is necessary to be explicit about the factors that induce different individuals to choose different levels of s. Second, $\ln(\hat{y}(s, p))$ is a highly nonlinear function of s. This is the case regardless of whether differences in schooling are due to differences in ability (z_h) or due to differences in the initial stock of human capital (h_B).

2.2 Equilibrium

Given the interest rate, standard profit maximization pins down the equilibrium capital-human capital ratio. However to determine output per worker, it is necessary to compute ‘average’ human capital in this economy. Since we are dealing with

\(^{12}\text{For a discussion of the problems associated with viewing schooling as an exogenous variable see Heckman, Lochner and Todd (2003), and Card (2000).}\)
finite lifetimes—and full depreciation of human capital—there is no aggregate version of the law of motion of human capital since, as the previous derivations show, the amount of human capital supplied to the market depends on an individual’s age. Thus, to compute average ‘effective’ human capital we need to determine the age structure of the population.

Demographics We assume that each individual has e^f children at age B. Since we consider only steady states, we need to derive the stationary age distribution of this economy associated with this fertility rate. Our assumptions imply

$$N(a, t) = e^f N(B, t - a)$$

and

$$N(t', t) = 0, \quad t' > T.$$

It is easy to check that in the steady state

$$N(a, t) = \phi(a)e^{\eta t}, \quad (6)$$

where

$$\phi(a) = \eta \frac{e^{-\eta a}}{1 - e^{-\eta T}}, \quad (7)$$

and $\eta = f/B$ is the growth rate of population.

Aggregation To compute output per worker it suffices to estimate the per capita aggregate amount of human capital effectively supplied to the market, and the physical capital - human capital ratio. The average amount of human capital per worker allocated to market production, \bar{h}, is given by

$$\bar{h} = \frac{\int_{6+s}^{R} h(a)(1 - n(a))\phi(a)da}{\int_{6+s}^{R} \phi(a)da}.$$

This formulation shows that, even if R—the retirement age— is constant, changes in the fertility rate and life expectancy, η and T respectively, can have an impact on the average stock of human capital.
Equilibrium Optimization on the part of firms implies that

\[p_k(r + \delta_k) = zF_k(\kappa, 1), \]

where \(\kappa \) is the physical capital - human capital ratio. The wage rate per unit of human capital, \(w \), is,

\[w = zF_h(\kappa, 1). \]

Then, output per worker is

\[y = zF(\kappa, 1)\bar{h}. \]

3 Calibration

We use standard functional forms. The production function is assumed to be Cobb-Douglas

\[F(k, h) = zk^{\theta}h^{1-\theta}. \]

Our calibration strategy involves choosing the parameters so that the steady state implications of the model economy presented above is consistent with observations for the United States (circa 2000). We then vary the exogenous demographic variables in accordance with the data, and we choose the level of TFP for other countries so that the model’s predictions for output per worker match that for the chosen country. Consequently, while TFP for other countries is chosen so as to match output per worker by construction, the model makes predictions on years of schooling, and the amount of goods inputs used in the production of human capital.

Following Cooley and Prescott (1995), the depreciation rate is set at \(\delta_k = .06 \).

Less information is available on the fraction of job training expenditures that are not reflected in wages. There are several reasons why earnings ought not to be equated with \(wh(1 - n) - x \). First, some part of the training is off the job and directly paid for by the individual. Second, firms typically obtain a tax break on the expenditures incurred on training. Consequently, the government (and indirectly, the individual
through higher taxes) pays for the training and this component is not reflected in wages. Third, some of the training may be firm specific, in which case the employer is likely to bear the cost of the training, since the employer benefits more than the individual does through the incidence of such training. Finally, there is probably some smoothing of wage receipts in the data and consequently, the individual’s marginal productivity profile is likely to be steeper than the individual’s wage profile. For all these reasons, we set $\pi = 0.5$. We also assume that the same fraction π is not measured in GDP.

Our theory implies that it is only the ratio $h_B^{1-\gamma}/(z_h^{1-\nu}w^{\gamma_2-\nu(1-\gamma_1)})$ that matters for all the moments of interest. Consequently, we can choose z, p_k (which determine w) and h_B arbitrarily and calibrate z_h to match a desired moment. The calibrated values of z_h and h_B are common to all countries. Thus, the model does not assume any cross-country differences in an individual’s ‘ability to learn,’ or initial endowment of human capital. We set $B = 25$ and $R = \min\{64,T\}$. This leaves us with 7 parameters, $\theta, r, \delta_h, z_h, \gamma_1, \gamma_2$ and ν. The moments we seek in order to pin down these parameters are:

1. Capital’s share of income of 0.33. Source: NIPA
2. Capital output ratio of 2.52. Source: NIPA
3. Earnings at age R/Earnings at age 55 of 0.8. Source: SSA
4. Earnings at age 50/Earnings at age 25 of 2.17. Source: SSA
5. Years of schooling of 12.08. Source: Barro and Lee

If we were to take the view that $\pi = 1$, our estimate of the returns to scale, $\gamma = \gamma_1 + \gamma_2$ increases to 0.96 thereby further increasing the elasticity of output with respect to TFP. In a sense, choosing $\pi = 0.5$ understates our case.
7. Pre-primary expenditures per pupil relative to GDP per capita of 0.14. Source: OECD, Education at a Glance.

The previous equations correspond to moments of the model when evaluated at the steady state. This, calibration requires us to solve a system of 7 equations in 7 unknowns. The resulting parameter values are

<table>
<thead>
<tr>
<th>Parameter</th>
<th>θ</th>
<th>r</th>
<th>δ_h</th>
<th>z_h</th>
<th>γ_1</th>
<th>γ_2</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.315</td>
<td>0.07</td>
<td>0.018</td>
<td>0.361</td>
<td>0.63</td>
<td>0.3</td>
<td>0.55</td>
</tr>
</tbody>
</table>

3.1 More on the Production Function of Human Capital

Since the production function of human capital plays a central role in our results, it seems useful to discuss how our specification is related to the findings from the empirical labor literature. First, a casual reading of recent surveys suggests that the Ben-Porath (1967) model is the standard theory of life cycle earnings. Neal and Rosen (2000) state that to map talents and opportunities into life-cycle earnings profiles specific models are needed and that “the leading model of this kind in Ben Porath’s (1967) analysis of human capital investments.” In their conclusion, and after reviewing the merits of alternative models, Neal and Rosen conclude that “Human capital models stand out because they tie observed differences in earnings across education and occupation to observed differences in skill investment.” Browning, Hansen and Heckman (1999) in their survey of the micro approaches to macroeconomics discuss the leading models of earnings determination. Most of their discussion revolves around the version of the Ben-Porath model studied by Heckman, Lochner and Taber (1998). After analyzing several models, Browning, Hansen and Heckman state “The model of Ben-Porath (1967) provides a more rigorous formulation of the earnings equation that combines a theory of earnings with a theory of schooling and on-the-job training.” Mincer (1997) discusses the empirical success of the Ben-Porath (1967) model. He indicates — in his review of the implications of the model —, “Among them are the following observed phenomena:
1. Persons with more schooling tend to invest more in job training.

2. Persons significantly engaged in training in one period are likely to do so again in future periods of employment.

3. Persons with greater ability or better schooling tend to engage in job training more than others with the same (nominal) schooling.

4. When demand for human capital increases, both the profitability of schooling and of job training increases—at least in the short run. Consequently, school enrollment and job training incidence increase.

All of these implications are empirically confirmed in Section IV of this article.” (p. S45)

Second, even if one accepts the Ben-Porath (1967) model, the value of the parameters—in particular, the degree of returns to scale—plays an important role in our quantitative findings. It is simple to show that in the post-schooling period the reduced form human capital accumulation equation (see equation (2)), is given by

$$\dot{h}(a) = \hat{z}_h[n(a)h(a)]^\gamma - \delta h(a), \quad \gamma = \gamma_1 + \gamma_2, \quad a \in [6, R),$$

for some constant \hat{z}_h (that depends on the wage per unit of human capital). In many empirical studies, the version of the Ben-Porath (1967) model that is estimated is

$$\dot{h}(a) = \tilde{z}_h n(a)^\alpha h(a)^\beta - \delta h(a),$$

for some constant \tilde{z}_h, and where the implication $\alpha = \beta$ is not imposed. Since most estimates of the production function ignore goods, the best way of comparing our estimates with those in the literature is to evaluate whether $\alpha = \beta = \gamma = \gamma_1 + \gamma_2$.

A good summary of the existing estimates is provided by Browning, Hansen and Heckman (1999). In Table 2.3 they report estimates that range from 0.5 to 0.99. The best estimates at the low end of this range (e.g. Heckman (1976) and Haley (1976)) relied on data from synthetic cross sections—and even asset income—and
do not appear as reliable as the more recent estimates.14 Browning, Hansen and Heckman (1999) view more recent estimates of the Ben-Porath (1967) model using a true panel as more reliable. Table 2.4 reports the Heckman, Lochner and Taber (1998) estimates for different schooling levels and ability (as measured by the AFQT tests). In this more recent work with better quality data there is no instability of the parameter estimates: α and β are precisely estimated. Moreover, it is not possible to reject the hypothesis that a “neutral Ben Porath model ($\alpha = \beta$) explains the data.” (p. 584). Finally, the simple average of their estimates (across gender and schooling levels) is 0.92, which is very close to our preferred value (0.93). This is not surprising as the econometric procedure followed by Heckman, Lochner and Taber (1998) relies on matching data on age earnings profile, and this is the same evidence that our calibration exercise matches. More recently, Kuruşçu (2006), using an expanded data set (NLYS from 1979 to 1996) estimates $\alpha = \beta = 0.93 - 0.94$ (see Table 3 in the working paper version).

To provide some intuition for the source of identification, consider the role of the degree of returns to scale in determining the amount of investment. If γ is relatively small, then investment in human capital is relatively large even at the end of the working life. This is inconsistent with the shape of the age earnings profile in the data. On the other hand, if γ is close to one, then the amount of time (and goods)

14 Prior work that calibrated the returns to scale used estimates from Haley and Heckman - see for instance, Rangazas (2002). However, there are many issues associated with these earlier papers. For example, Heckman (1976) in discussing the lack of adjustment for vintage effects (which are important given the nature of the data) says “There is no adjustment for vintage effects. Such adjustments with these data would be pretentious given the imprecision with which the parameters are estimated.” Among the early estimates, the only one that relies on panel data [Brown (1976)] covers only very young men but he only has data for 233 young men. Moreover, the parameters are not precisely estimated. Haley (1976) uses total income which includes non-labor earnings. Furthermore, Haley (1976) arbitrarily restricts a key parameter to take on a value of 0.5 (which is effectively $h_B^{1-\gamma}/z_h$ in the context of our model) in his work and also discusses at length the issues of identification. These explain his lower estimate of γ.

16
allocated to on the job training is very small. Moreover, it is this property of the
model that is used by Heckman, Lochner and Taber (1998) to attain identification.
Since Huggett, Ventura and Yaron (2006) do not use that evidence (they only look at
the cross sectional variance but not the change over time for a particular individual)
their model has very little power to pin down the degree of returns to scale. Hence,
their calibration sets $\alpha = \beta$ and considers values ranging from 0.5 to 0.99 with similar
success.

The Ben-Porath model also has implications for the role (and costs) played by
training (both on and off the job) in the formation of human capital. It is very difficult
to obtain direct estimates of training costs. There is substantial evidence that training
affects wages. If we measure training costs as a fraction of human capital, the model
predicts it to be 21%. This value is very close to Heckman’s estimates (23%). At the
macro level, we estimate training costs to be approximately 9.6% of GDP. Mincer
(1997) uses both direct and indirect estimates of the cost of on the job training. His
estimates suggest that measured training costs (in firms) range between 3% and 4% of output. Finally, Parente and Prescott survey estimates by Heckman et al (1998)
and Mulligan and conclude that a plausible number for training costs is about 10%
of GDP. Our estimate is very close to that of Parente and Prescott.

Finally, in order to evaluate the consequences of deviating from our preferred
parameter values, we calculated the implication of the Ben-Porath (1967) model for
the age earnings profile for alternative parameter values. In Figure 1 we show the
impact of changing γ (keeping the ratio of γ_1 to γ_2 unchanged) on the predictions of
the model for the ratio of earnings between ages 25 and 50.

Low values of γ (i.e. $\gamma = 0.50$) imply too steep an age earnings profile, while
values closer to the constant returns to scale model (i.e. $\gamma = 0.99$) result in a
decreasing age earnings profile.\footnote{If one fixes $\gamma_2 = 0.33$ and changes γ_1 the results are similar. If $\gamma_1 = .55$, the earnings ratio is 4.03, while if it is set to .65 the earnings ratio decreases to 0.72.} The intuition for these results parallels the findings
Figure 1: Effect of changing γ on the shape of the age earnings profile
in growth models: In the case of constant returns to scale the optimal solution is to ‘jump’ to the balanced growth path instantaneously; however, given finite lifetimes and depreciation, the optimal path of human capital accumulation demands a slow decrease over time. Thus, earnings at age 50 are, counterfactually, below earnings at age 25. If the production function for human capital displays returns to scale that are lower than the calibrated values, standard arguments imply ‘slow’ convergence and, hence, a high ratio of earnings at age 50 relative to earnings at age 25.\footnote{We also considered the impact of changing the interest rate. If, as in Heckman (1976) we use a 20\% interest rate, then our estimate of the returns to scale is also close to 0.5. However, as argued by Cunha, Heckman, Lochner and Masterov (2005), there is little evidence that financial constraints—which would justify using a high discount rate—are important for understanding schooling choices.}

In the macro literature (see Parente and Prescott (2000)), the degree of returns to scale is calibrated to be much lower. The reason for this is that the standard model assumes that individuals have infinite horizons. Even though our model is consistent with the Barro and Becker (1988) arguments for the infinite horizon representation of finite lifetimes, our point of departure with the macro literature lies in the view of human capital. If we took the Ben-Porath (1967) model as a description of the aggregate—as opposed to individual—law of motion of human capital we would have to assume that each child inherits his parent’s human capital. This seems a stretch even in fairly abstract models. Moreover, the finite horizon assumption plays an important role: since individuals know that their human capital will become worthless when they retire/die, they do not invest much in it, even if the technology is very productive. In the infinite horizon/permanent human capital view, a high productivity of resources in the production of human capital results in large investments which are inconsistent with the evidence. Thus, to make the models match the data on expenditures, a low degree of returns to scale is necessary. Since the two formulations have fairly different implications, we do not view the findings from the macro literature as relevant
for our exercise.17

4 Results

Before turning to the results, we first describe the data so as to get a feel for the observations of interest. We start with the countries in the PWT 6.1 and put them in deciles according to their output per worker, y. Next, we combine them with observations on years of schooling (s), expenditures relative to GDP (x_s), life expectancy (T), total fertility rate ($e_f/2$), and the relative price of capital (p_k) for each of these deciles. The population values are displayed in the following table.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|}
\hline
Decile & y (relative to US) & s & x_s & T & $e_f/2$ (TFR/2) \\
\hline
90-100 & 0.921 & 10.93 & 3.8 & 78 & .85 \\
80-90 & 0.852 & 9.94 & 4.0 & 76 & .9 \\
70-80 & 0.756 & 9.72 & 4.3 & 73 & 1 \\
60-70 & 0.660 & 8.70 & 3.8 & 71 & 1.2 \\
50-60 & 0.537 & 8.12 & 3.1 & 69 & 1.35 \\
40-50 & 0.437 & 7.54 & 2.9 & 64 & 1.6 \\
30-40 & 0.354 & 5.88 & 3.1 & 57 & 2.05 \\
20-30 & 0.244 & 5.18 & 2.7 & 54 & 2.5 \\
10-20 & 0.146 & 4.64 & 2.5 & 51 & 2.7 \\
0-10 & 0.052 & 2.45 & 2.8 & 46 & 3.1 \\
\hline
\end{tabular}
\caption{World Distribution}
\end{table}

17It is interesting to note that even with constant returns to scale, i.e. $\gamma = 1$, our model does not generate endogenous growth. The reason is simple: we have a time varying depreciation rate which is δ_h before age T, and 100\% at age T. This, of course, prevents the stock of human capital from increasing without bound.
Table 2 illustrates the wide disparities in incomes across countries. The United States possesses an output per worker that is about 20 times as high as the countries in the bottom decile. Years of schooling also vary systematically with the level of income—from about 2 years at the bottom deciles to about 11 at the top. The quality of education as proxied by the expenditures on primary and secondary schooling as a fraction of GDP also seems to increase with the level of development. This measure should be viewed with a little caution as it includes only public inputs and not private inputs (including the time and resources that parents invest in their kids). Demographic variables also vary systematically with the level of development—higher income countries enjoy greater life expectancies and lower fertility rates. More important, while demographics vary substantially at the lower half of the income distribution, they do not move much in the top half. Finally, the relative price of capital in the richest countries is about a third of the level in the poorest countries.

Development Accounting We now examine the ability of the model to simultaneously match the cross country variation in output per capita, years of schooling, and measures of spending in education. To isolate the role of human capital, we ignore cross-country differences in the price of capital. Thus, we set $p_k = 1$ in every country (we relax this later). To be clear, we change R (retirement age) and e^f (fertility rate) and T (life expectancy) across countries (according to the data) and choose the level of TFP in a particular country so as to match output per worker. Table 3 presents the predictions of the model and the data.
<table>
<thead>
<tr>
<th>Decile (relative to US)</th>
<th>(y)</th>
<th>(TFP)</th>
<th>(s)</th>
<th>(x_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
<td>Model</td>
</tr>
<tr>
<td>90-100</td>
<td>0.921</td>
<td>0.99</td>
<td>10.93</td>
<td>11.64</td>
</tr>
<tr>
<td>80-90</td>
<td>0.852</td>
<td>0.98</td>
<td>9.94</td>
<td>10.92</td>
</tr>
<tr>
<td>70-80</td>
<td>0.756</td>
<td>0.97</td>
<td>9.72</td>
<td>10.40</td>
</tr>
<tr>
<td>60-70</td>
<td>0.660</td>
<td>0.95</td>
<td>8.70</td>
<td>9.64</td>
</tr>
<tr>
<td>50-60</td>
<td>0.537</td>
<td>0.93</td>
<td>8.12</td>
<td>8.90</td>
</tr>
<tr>
<td>40-50</td>
<td>0.437</td>
<td>0.90</td>
<td>7.54</td>
<td>6.79</td>
</tr>
<tr>
<td>30-40</td>
<td>0.354</td>
<td>0.88</td>
<td>5.88</td>
<td>5.69</td>
</tr>
<tr>
<td>20-30</td>
<td>0.244</td>
<td>0.85</td>
<td>5.18</td>
<td>4.29</td>
</tr>
<tr>
<td>10-20</td>
<td>0.146</td>
<td>0.82</td>
<td>4.64</td>
<td>3.01</td>
</tr>
<tr>
<td>0-10</td>
<td>0.052</td>
<td>0.73</td>
<td>2.45</td>
<td>2.19</td>
</tr>
</tbody>
</table>
The striking results are the estimates of TFP. In our model, TFP in the poorest countries (i.e. countries in the lowest decile of the world income distribution) is estimated to be only 73% of the level of TFP in the United States. This is in stark contrast to the results of Parente and Prescott (2000), Hall and Jones (1999) and Klenow and Rodriguez-Clare (1997) who find that large differences in TFP are necessary to account for the observed differences in output per worker. By way of comparison, the corresponding number in their studies is around 25%. Thus, our estimate of TFP in the poorest countries is more than two times higher.

The model does fairly well matching the two variables that it predicts: schooling and expenditures in formal education. The results are in Table 3 in the columns labeled s and x_s. The predictions for schooling are close to the data. In terms of a rough measure of quality such as schooling expenditures as a fraction of output, the model actually underpredicts investment at the two ends of the world income distribution.\(^{18}\) Thus, this cannot explain our findings.\(^{19}\)

We used the model to compute the elasticity of output with respect to TFP when all factors are allowed to vary (this is the very long run), and the economy has adjusted to the new steady state. We estimate this elasticity to be around 9. This estimate suggest that, in the long run, there are large payoffs in terms of output per worker of small changes in TFP.

A second source of differences across countries is demographics. At the individual level earlier retirement (lower R) induces less demand for human capital, as it can only be used for fewer periods. Since poor countries have lower effective values of R, this results in lower levels of human capital. At the aggregate level, differences

\(^{18}\)The model overpredicts x_s for countries in the middle of the distribution.

\(^{19}\)As mentioned before, the model makes predictions on the total amount of goods used in the production of schooling including the value of goods and time parents allocate to educating their children outside of formal schooling. The data includes only the expenditures classified as (public) school expenditures. Moreover, it is not clear to what extent capital costs are included in this measure.
in fertility and life expectancy result in differences in the fraction of the population that is at different stages of their working life. Since poorer countries tend to have a larger fraction of the working age population concentrated in the younger segments, and since human capital increases with age (except near the end of working life), aggregation results in smaller levels of human capital for poorer countries. Thus, as we argue next, differences in demographics play a significant role.

Changing Demographics Imagine holding TFP fixed at the baseline level (where the relative price of capital is also held fixed) and imagine changing all the demographic variables to the US level. The results of such an experiment are presented in Table 4.

<table>
<thead>
<tr>
<th>Decile</th>
<th>y</th>
<th>s</th>
<th>Data</th>
<th>baseline</th>
<th>demog</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>0.921</td>
<td>10.93</td>
<td>11.64</td>
<td>11.70</td>
<td></td>
</tr>
<tr>
<td>80-90</td>
<td>0.852</td>
<td>9.94</td>
<td>10.92</td>
<td>11.21</td>
<td></td>
</tr>
<tr>
<td>70-80</td>
<td>0.756</td>
<td>9.72</td>
<td>9.40</td>
<td>10.2</td>
<td></td>
</tr>
<tr>
<td>60-70</td>
<td>0.660</td>
<td>8.70</td>
<td>8.64</td>
<td>9.33</td>
<td></td>
</tr>
<tr>
<td>50-60</td>
<td>0.537</td>
<td>8.12</td>
<td>7.30</td>
<td>8.56</td>
<td></td>
</tr>
<tr>
<td>40-50</td>
<td>0.437</td>
<td>7.54</td>
<td>6.49</td>
<td>7.92</td>
<td></td>
</tr>
<tr>
<td>30-40</td>
<td>0.354</td>
<td>5.88</td>
<td>5.49</td>
<td>7.12</td>
<td></td>
</tr>
<tr>
<td>20-30</td>
<td>0.244</td>
<td>5.18</td>
<td>4.29</td>
<td>5.97</td>
<td></td>
</tr>
<tr>
<td>10-20</td>
<td>0.146</td>
<td>4.64</td>
<td>3.01</td>
<td>4.79</td>
<td></td>
</tr>
<tr>
<td>0-10</td>
<td>0.052</td>
<td>2.45</td>
<td>2.19</td>
<td>4.04</td>
<td></td>
</tr>
</tbody>
</table>

For example, if countries in the lowest decile were to have the same demographic profile as the United States, their output per worker would increase more than 100%.
(from 5.2% to 12.3% of the U.S. level). This is accompanied by the doubling in the level of schooling. In this experiment, demographic change drives both schooling and output. Thus, the model is consistent with the view that changes in fertility can have large effects on output. It is important to emphasize that our quantitative estimates reflect long run changes. The reason is that they assume that the level of human capital has fully adjusted to its new steady state level. Given the generational structure, this adjustment can take a long time.

As expected, even though demographic change will substantially help poor countries, it will not have much of an impact among the richest countries. For example, for countries in the second decile (with initial income between 80% and 90% of the richest countries) there is no change in output per worker.

From a methodological point of view, ignoring the age structure of the population would have resulted in a much smaller estimated impact of TFP on output per worker. To be precise, had we assumed that every country has the same demographic structure as the U.S., we would have found that the level of TFP required to match (relative) output per worker in the lowest decile is 65% of the U.S. (instead of 73%). This reduces the estimated elasticity of output per worker with respect to TFP by about 30%.

Even though we find large effects associated with demographic change our results should be viewed with caution since we assume that demographic change is orthogonal to changes in TFP, while in a model of endogenous fertility it is likely that macro conditions will affect fertility decisions (and longevity). The important observation is that changes in fertility induced by aggregate changes can have large effects on income through their impact on human capital accumulation decisions. In ongoing work, we study the impact that changes in TFP have upon (endogenously chosen) fertility.
Differences in the Price of Capital So far we have assumed that there are no distortions in the price of capital. Following Chari Kehoe and McGrattan (1997) we now allow p_k to vary according to the values in Table 2. Table 5 presents the results.

<table>
<thead>
<tr>
<th>Decile</th>
<th>y (relative to US)</th>
<th>p_k</th>
<th>TFP baseline</th>
<th>TFP p_k varies</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-100</td>
<td>0.921</td>
<td>1.02</td>
<td>0.99</td>
<td>1.00</td>
</tr>
<tr>
<td>80-90</td>
<td>0.852</td>
<td>1.11</td>
<td>0.98</td>
<td>1.01</td>
</tr>
<tr>
<td>70-80</td>
<td>0.756</td>
<td>1.06</td>
<td>0.97</td>
<td>0.99</td>
</tr>
<tr>
<td>60-70</td>
<td>0.660</td>
<td>1.04</td>
<td>0.95</td>
<td>0.96</td>
</tr>
<tr>
<td>50-60</td>
<td>0.537</td>
<td>1.52</td>
<td>0.93</td>
<td>1.05</td>
</tr>
<tr>
<td>40-50</td>
<td>0.437</td>
<td>1.77</td>
<td>0.90</td>
<td>1.07</td>
</tr>
<tr>
<td>30-40</td>
<td>0.354</td>
<td>1.56</td>
<td>0.88</td>
<td>1.01</td>
</tr>
<tr>
<td>20-30</td>
<td>0.244</td>
<td>1.93</td>
<td>0.85</td>
<td>1.05</td>
</tr>
<tr>
<td>10-20</td>
<td>0.146</td>
<td>2.11</td>
<td>0.82</td>
<td>1.04</td>
</tr>
<tr>
<td>0-10</td>
<td>0.052</td>
<td>2.78</td>
<td>0.73</td>
<td>1.01</td>
</tr>
</tbody>
</table>

When the price of capital varies according to the data, no differences in the level of productivity are needed to account for the world income distribution. Thus, differences in the price of capital and endogenous accumulation of inputs (mostly human capital) can account for all of the observed differences in output per worker.

5 The Role of Human Capital: Discussion

In this section we describe some of the implications of the model. We emphasize those aspects that provide us insights on how cross-country differences in TFP can account for differences in schooling and the quality of human capital.
A Comparison with the Mincerian Approach

At this point it is useful to compare the differences between our analysis based on an explicit optimizing approach (where schooling and the earnings profile are endogenous) with an approach that takes the results of a Mincer regression as estimates of a production function. The Mincerian framework assumes that the average human capital of a worker in country i with s_i years of schooling is

$$\hat{h}_i = Ce^{\phi_i s_i}.$$

The standard approach uses an estimate of $\phi_i = \phi \approx 0.10$, which corresponds to a 10% return. Thus, if we take a country from the lowest decile with $s_P = 2$, and assuming that the average worker in the U.S. has 12 years of schooling, we estimate that the average human capital of the poor country (relative to the U.S.) is

$$\frac{\hat{h}_P}{\hat{h}_{US}} = e^{-1 \times 10} = 0.37.$$

Our approach, in a reduced form sense, allows for the Mincerian intercepts to vary across countries. Thus in our specification, we can view average human capital in country i as

$$\bar{h}_i = C_i e^{\phi_i s_i}.$$

If, as before, we compare a country from the bottom decile of the output distribution with the U.S., Table 6 implies that its relative average human capital is 0.08. It follows that our measure of quality, for this pair of countries, is simply

$$\frac{C_P}{C_{US}} = \frac{\hat{h}_P}{\hat{h}_{US}} e^{\phi (s_{US} - s_P)} = 0.08 \times 2.71 = 0.22.$$

Thus, our numerical estimate is that the quality of human capital in a country in the lowest decile is approximately one fifth of that of the U.S. In our model, this ratio is driven by differences in wages and demographics. The magnitude of the differences in relative quality suggests that ignoring this dimension can induce significant biases in the estimates of human capital.\(^{20}\)

\(^{20}\)In a recent paper, Caselli (2003) explicitly models, in a reduced form sense, differences in C_i.
The Importance of Early childhood and On-the-Job Training (OJT)

Our model implies that, even at age 6, there are substantial differences between the human capital of the average child in rich and poor countries. In Table 6 we present the values of human capital at age 6 (h_E) and aggregate human capital per worker (\bar{h}) for each decile relative to the U.S. Even though the differences in early childhood capital are small for the relatively rich countries (output per worker at least 75% of the U.S.), the differences are large when comparing rich and poor countries. Our estimates suggest that a six year old from a country in the bottom decile has less than 50% of the human capital of a U.S. child.

The differences in stocks of human capital produced by our model is a result of investments undertaken over the three phases - early childhood, schooling and job training. It is only natural to further investigate the importance of each of these channels in contributing to human capital differences. One possible way to arrive at the contribution of each of the three phases is

$$1 = \frac{\bar{h} - h(6 + s)}{\bar{h}} + \frac{h(6 + s) - h_E}{\bar{h}} + \frac{h_E}{\bar{h}}.$$

Recall that $h(6 + s)$ is the stock of human capital that an individual possesses at the age at which he leaves school (see equation (5)). The last 3 columns of Table 6 presents the results. Notice that while on the job training and schooling are the dominant contributors in the top deciles, early childhood contributes a lot more to the bottom deciles. This transpires mainly because in poorer nations, children constitute a significant part of the workforce. Since a large fraction of the working population is young, this large mass contributes a lot more to human capital per worker differences than in a richer country where the population distribution is close to uniform.

across countries. He then uses some empirical results to estimate how much of the differences in country characteristics can explain differences in quality and concludes that these cannot be important factors. Our results differ from his in that we use an explicit model to compute quality differentials.
<table>
<thead>
<tr>
<th>Decile</th>
<th>Relative to U.S.</th>
<th>Contribution (Shares)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>y</td>
<td>h_E</td>
</tr>
<tr>
<td>90-100</td>
<td>0.921</td>
<td>0.96</td>
</tr>
<tr>
<td>80-90</td>
<td>0.852</td>
<td>0.91</td>
</tr>
<tr>
<td>70-80</td>
<td>0.756</td>
<td>0.88</td>
</tr>
<tr>
<td>60-70</td>
<td>0.660</td>
<td>0.86</td>
</tr>
<tr>
<td>50-60</td>
<td>0.537</td>
<td>0.79</td>
</tr>
<tr>
<td>40-50</td>
<td>0.437</td>
<td>0.72</td>
</tr>
<tr>
<td>30-40</td>
<td>0.354</td>
<td>0.65</td>
</tr>
<tr>
<td>20-30</td>
<td>0.244</td>
<td>0.60</td>
</tr>
<tr>
<td>10-20</td>
<td>0.146</td>
<td>0.53</td>
</tr>
<tr>
<td>0-10</td>
<td>0.052</td>
<td>0.47</td>
</tr>
</tbody>
</table>

6 Some Implications of the Model

The main difference between our set-up and other approaches lies in the specification of the production function of human capital. It seems natural then to ‘test’ the model by confronting some of its implications with the data. There are two dimensions that seem worth exploring. First, since our estimates of the stock of human capital are very different from those obtained using estimates of a Mincer-style regression, it is not clear whether data generated by our model can match the estimated return to schooling. Second, since our model relies on cross-country differences in the quality of human capital it has sharp implications about the incomes of immigrants. To test how reasonable the model is, we compare the predictions of the model with the evidence on the behavior of earnings of immigrants.
6.1 Mincer Regressions

Even though the interpretation and the precise point estimate of the schooling coefficient in a Mincer regression is controversial, most estimates—at least when linearity is imposed—seem to be close to 10%.\footnote{The assumption that the relationship between log earnings and schooling is linear is also controversial. Heckman, Lochner and Todd (2003) document significant non-linearities. More recently, Belzil and Hansen (2002) find that, when the return is allowed to be a sequence of spline functions, the relationship is convex.} Thus, one challenge for the model economy is to reproduce the rate of return in a Mincer-style regression.

Since the model predicts that all (homogeneous) individuals choose exactly the same level of schooling, it is necessary to introduce some source of microeconomic heterogeneity. To generate differences among individuals within a country the model has two natural candidates: differences in z_h (ability to learn), and differences in h_B (initial human capital). From the results in Proposition 1 it follows that the equilibrium years of schooling depend on the ratio $h_B^{1-\gamma} / \left(z_h^{1-\upsilon} w^{\gamma_2-\upsilon(1-\gamma_1)} \right)$. Since in a given country all individuals face the same wage and interest rate, differences in s are driven by differences in (z_h, h_B). These two variables have very different impacts on lifetime earnings. Heterogeneity in z_h results in lifelong differences in earnings (lack of convergence across individuals), while differences in h_B get smaller with age.

For our computations we varied z_h (and h_B) so as to generate lifetime earnings for individuals who choose to acquire between 0 and 20 years of education. Given the non-linearity of the earnings function, we need population weights of individuals in different categories of experience and schooling. We obtain these population weights from the NLSY, with schooling ranging from 0 through 20 and experience going from 5 to 45. We then proceed in two steps: If the only source of heterogeneity is in ability, we adjust z_h from its baseline value in order to obtain the ability levels that lead to the different schooling levels. Thus, there will be as many ability levels as there are schooling levels. We also have their predicted age earnings profiles. Next,
we draw observations from the experience-schooling categories depending on their population weights. For instance, if the group with 12 years of schooling and 10 years of experience has a mass of .1 while the group with 12 years of schooling and 30 years of experience has a mass of .05, we then draw twice as many observations from the first category relative to the second. We then run a standard Mincer regression with schooling, experience and the square of experience as independent variables and the logarithm of earnings on the left. We repeat these steps and recover the Mincerian return when the only source of variation is in initial human capital.22

The Mincer coefficient generated by variation in ability alone is around 13% while that obtained from variation in h_B alone is close to 0. In order to obtain a point estimate of the return, we need to know the joint distribution of z_h and h_B. However, given the rather tight bounds that we obtain, we conclude that the model is consistent with the ‘stylized fact’ that the Mincerian return for the United States is around 8%.

As a second test, we computed for each representative country in our world distribution of output (10 countries in all) the effect on log earnings of an additional year of education, and we took this to be the return on schooling in country (decile) i. We then regressed this return on the log of GDP per capita and obtained a coefficient of -0.10 (when z_h is the only source of heterogeneity), and -0.04 (when h_B varies). This is to be compared with a similar exercise —with actual data— run by Banerjee and Duflo (2004) using different data sets. Their estimate is -0.08. Thus, depending on the mix between z_h and h_B the model can account for the cross-country evidence on Mincerian returns.

To summarize, the cross-section (within a country) relationship implied by the model between returns to schooling and years of schooling is positive, while the cross-country estimate is negative. Even though this looks like a contradiction, that is not the case. The key observation is that along a given earnings-schooling profile (for a given country) only individual characteristics are changing, while the profiles of

22 We follow the same procedure when we adjust h_B.

different countries reflect differences in demographics and wage rates. It is possible to show that demographic differences and differences in wage rates imply that the earnings-schooling profile of a poor country lies below that of a rich country. It turns out, that the poor country profile is also steeper than the rich country profile. Since the return to formal education is, approximately, the derivative of the earnings-schooling profile, it is the increased steepness of the earnings-schooling profile as TFP decreases (a cross-country effect) that dominates the convexity of the profile as schooling increases (for a given level of TFP) that is the dominant effect that accounts for the cross-country observations.

6.2 Immigrant Evidence

A key prediction of the model is that the quality of human capital varies (inversely) with the level of development. Thus, it implies that if we compare two individuals with the same level of schooling acquired in different countries, their effective amount of human capital will also be different. A simple test of the model would be to bring an individual from a poor country to a rich country and observe his income relative to a native with the same schooling level.

One imperfect piece of evidence related to this thought experiment is provided by the experience of immigrants in relatively rich countries. Our casual reading of this literature suggests the following stylized facts (related to immigrants in the U.S.).

Fact 1 Immigrants earn initially lower income than comparable natives with the same level of schooling. This wage differential has been increasing over time.

Fact 2 The growth rate of earnings of immigrants is higher than the growth rate of earnings of similar—in terms of measurable characteristics—natives.

Fact 3 The level of earnings of recent immigrants, holding schooling constant, is positively related to the level of per capita output in their country of origin.
The model presented in this paper is too simple to account for the complex and changing patterns of migration. Nevertheless, in order to get a rough idea of the quantitative predictions of the model, we study earnings in the U.S. (predicted by the model) of an immigrant who has approximately the years of schooling of the average immigrant in the U.S., and originates from different countries as measured by the level of development. Once this individual has migrated, he chooses investment in human capital optimally given the prices that he faces and the new working horizon (we assume that the migrant retires at the same age as the native). We analyze earnings of a 25 year old migrant who chooses not to go back to school. Our theory implies that an immigrant from a poor country will earn less than a native and that he will choose to invest more in human capital since he starts with a lower stock of human capital than the comparable native. Thus, our theory also predicts some catch-up. Qualitatively, the model is consistent with the facts. We now discuss the ability of the model to match the data from a quantitative point of view.

Fact 1 Borjas (1994) estimates that, for recent arrivals, the percentage wage differential between immigrant and native men increased from -16.6% in 1970 to -31.7% in 1990 (see Borjas (1994), Table 3). In order to estimate the implications of the model, we need time series estimates of the schooling levels for natives and immigrants, as well as the ‘identity’ of their country of origin, so that we can estimate the change in ‘quality’ of the human capital of the average immigrant. Borjas (1992) estimates that, in 1970, the average immigrant had .2 years of education less than a native (who had 11.3 years at the time), while in 1990 we estimate that the average immigrant had 12.5 years of schooling (natives had

23 To be precise, we pick z_h for the potential migrant so that, given the environment in his home country, he chooses to acquire the observed years of education of the average migrant.

24 Had we chosen to study a younger immigrant, the model would have predicted that some of them—depending on the country of origin—would enroll in school after migrating to the U.S. This is consistent with the findings of Betts and Lofstrom (2000), but we do not pursue this line here.
He also reports that the level of GNP per capita in the country of origin of the typical recent immigrant in 1970 was slightly above 50% of the U.S., while in the 1980s (we do not have data for 1990) it had decreased to approximately 39% of U.S. GNP per capita. Using those values the model predicts that initial—defined as the average over the first five years after immigration—earnings of the average immigrant are 15% lower than those of the natives in 1970, and 23% in 1990. The model is consistent with the view that the ‘quality’ of the average immigrant has decreased, and this is one reason why recent immigrants earn less than natives (see Borjas (1994)).

Fact 2 Borjas (1994) reports the evidence on the growth rate of earnings of immigrants relative to natives. The precise amount of catch-up is controversial (see Borjas (1994) for a discussion), but it is in the range of 6-15% for the first decade after immigration to 10-25% for the first two decades after immigration. We analyzed the 10 and 20 year average growth rate of earnings (relative to natives with the same years of schooling) for two individuals: one that comes from a country in the middle of the world income distribution and the other that comes from a country in the lowest decile. As before, we considered both individuals that differ in terms of their h_B, as well as immigrants who differ (from their fellow country men) in terms of z_h. The results (the first number

25 This estimate implies that the gap between immigrants and natives that was estimated to be large in 1980 by Borjas, has narrowed in the 1990s. For evidence on this see Betts and Lofstrom (2000).

26 The model underpredicts the drop in income. However, this is due to our choice of concentrating on selecting immigrants in terms of z_h. If immigrants were selected only in terms of differences in h_B, the model predicts differences of -37% and -51%. Thus if the proportion of ‘z_h immigrants’ was 92% in 1970 and 68% in 1990, the model would perfectly predict the observed differences in income. The increase in the proportion of immigrants who gain less from immigrating is consistent with the change in U.S. immigration policy that reduced the number of ‘economic’ migrants in favor of individuals with family ties.

27 As before, when we “endow” an individual with a different level of z_h (or h_B) we solve the
corresponds to h_B, while the second gives the predictions for z_h) are presented in Table 7. Our estimates fall within the range reported in the literature and capture the actual amount of catch-up.

<table>
<thead>
<tr>
<th>Table 7. Growth Rate of Relative Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>GNP (origin)</td>
</tr>
<tr>
<td>Middle Income</td>
</tr>
<tr>
<td>Low Income</td>
</tr>
</tbody>
</table>

Fact 3 We used the model to estimate the level of initial income (first five years) for an individual with 12 years of schooling as a function of output per worker in his country of origin. We computed earnings in the U.S. of an immigrant from a middle income country (50% of U.S. output per worker) and a poor country (7% of U.S. output per worker). Given the non-linearity of the model, the computed elasticity is sensitive to the choice of country (as well as source of variation). We find estimates that range from 0.01 to 0.04 (when only z_h is varied) to 0.05 to 0.17 (when only h_B is varied). Borjas (1994) indicates that the elasticity of earnings with respect to GDP is around 0.04, while Borjas (2000, Table 1.6 column 4) estimates the elasticity around 0.05. Thus, the model’s predictions are roughly in agreement with the evidence.

Jasso and Rosenzweig (2002) report earnings of immigrants in their country of origin and in the U.S. They report differences in wages that correspond to average ‘before’ and ‘after’ migration wages. Large differences are interpreted as evidence of substantial TFP differences. Their findings suggest that, on average, migration is associated with significant increases in earnings. The average value masks a substantial amount of heterogeneity. For example, Jasso and Rosenzweig report that 24% of the sample earned less in the U.S. than in their country of origin. The small sample

“new” income maximization problem faced by that individual, and we use the values of human capital corresponding to the new solution.
size (230 observations), the imputation criteria28, and the lack of data that would allow us to use our model to predict earnings29, makes us cautious about using these estimates.

In research that is quite close in spirit to our work, Hendricks (2002), uses earnings of immigrants to the U.S. to estimate the human capital in the country of origin. He concludes that human capital differences cannot account for a large share of the cross-country variation in output per worker. In Hendricks’ framework — and ignoring self-selection— if the ‘efficiency’ of human capital in country j is close to one, then the Mincer estimate of human capital is approximately correct, and the approach pioneered by Klenow and Rodriguez-Clare (1997), and Hall and Jones (1999) yields the correct estimate of human capital for each country. Hendricks’ estimates of the efficiency parameter are quite high, with only 7 out of 67 countries in the sample displaying efficiency levels below 80% of the U.S., and the ‘low income’ sample having an average efficiency level of 90% of the U.S.30

Hendricks’ results are not inconsistent with the model in this paper, even though his interpretation is. In order to properly evaluate the results it is necessary to use a model that explains the determinants of schooling. To be precise, it is necessary to take a stand on the reasons why an immigrant to the U.S. from the second lowest decile in Hendricks’ sample31 has more than 15 years of schooling, while the average

28Jasso and Rosenzweig imputed full time earnings on the basis of their information. They do not report what fraction of the sample had its earnings imputed.

29To be precise, we need data on the time elapsed between last job in the country and first job in the U.S. so that we can use our model to adjust for changes in human capital.

30The efficiency levels in the one type of human capital model can be estimated from the information in Table 1 (p. 204) in Hendricks (2002). They are given by the ratio w^j_0/w^N_0, which can be inferred from the Table. Hendricks sample is not comparable to ours. There is no data for any country in the lowest decile, and data for only two countries for the second poorest decile. We thank Lutz Hendricks for his help in interpreting his estimates.

31These countries are Ghana and Kenya. Ethiopia, which is in the poorest 10%, is listed in the Appendix, but no data are presented in Table 1.
years of a worker schooling that did not migrate is 4.64. One possibility is to assume that observed years of education and ability are not correlated. Thus, the ability of the migrant is similar to the ability of a native (U.S.) worker. In this view, differences in schooling must be due to shocks and Hendricks’ conclusion is correct. In the framework of this paper more able individuals acquire, in equilibrium, more schooling. Thus, in our view an individual who has acquired 15 years of schooling when the average in his country of origin is just 5, has a higher ability level. To check if the implied (by the model) differences in ability is consistent with the evidence presented by Hendricks we followed the same strategy we used before: we picked a z_h (for the future migrant to the U.S.) to match the level of schooling of immigrants. In this case, our estimates of efficiency are around 80-90%.32

We conclude that Hendricks’ evidence is not inconsistent with our model, although his interpretation of it is. However, we conclude that our view is a more reasonable description of the evidence on immigrant earnings. The reason for this is simple: Under Hendricks’ interpretation, natives and immigrants with the same level of schooling should behave in similar ways. The evidence surveyed by Borjas (1994, 2000) clearly shows that this is not the case. On the other hand, our approach is consistent with both the catch up data and the change of origin evidence, which suggest that selection —our main driving force— plays a substantial role in explaining immigrant earnings.

Mexican Immigration: A Case Study The above analysis suggests that the model does a reasonable job at tracking the earnings dynamics of immigrants. Nev-

32This implies that this “high z_h” individual invests more in human capital than the “average z_h” individual in his country of origin. Thus, when he “arrives” in the U.S. (with 15 years of schooling), his human capital is significantly higher than the average for his country of origin.

33Hendricks finds that for many countries, including some relatively poor countries, the efficiency parameter exceeds 100%. Our model, by construction, has to find efficiency levels below 100%. Of course, this ignores selection in other dimensions.
ertheless, the data is plagued by problems of small samples thereby making inferences rather questionable. The ideal thought experiment would be to bring in a large number of immigrants into the United States and compare their earnings with individuals with the same years of schooling who chose to stay back at the home country. Immigrants from Mexico, by virtue of their large number relative to the Mexican population, present such an opportunity.

In 2000, Mexican GDP per worker was around 40% of that of the US. Years of schooling in Mexico were around 6 while that in the US was around 12. According to Chiquiar and Hanson (2005) the average wage of a high school graduate who migrated to the United States relative to the average wage of a high school graduate who chose to stay back in Mexico at age 30 is around 1.43. Since the average Mexican migrates at age 21, it is safe to assume that the average migrant acquired most of his schooling in Mexico. Now we turn to examining the predictions of our model. Imagine that we were to choose the level of TFP that matched the relative GDP per worker differentials. It follows that

$$\frac{w^{US}}{w^{MEX}} = \left(\frac{z^{US}}{z^{MEX}} \right)^{1/(1-\theta)} = (1.136)^{1/(1-0.315)} = 1.2.$$

Notice that even though TFP in the US is only about 13.6% higher than Mexico, the average wage per effective unit of human capital is amplified by the capital’s share of income, θ. Next, we need to compute the stock of human capital of a high school graduate in Mexico. Since the average Mexican goes to school for only about 6 years, something needs to change at the micro level in order for the hypothetical individual to endogenously acquire 12 years of schooling. Assume that the ability level, z_h is adjusted upwards so as to induce the individual to acquire 12 years of schooling. We consider two cases, one wherein migration unexpectedly happens at age 21 and the other extreme wherein at birth, the individual knew that he was going to migrate to the United States at age 21.

Case 1: Migration Unexpected: When migration unexpectedly happens, the migrant to the United States faces a higher effective wage rate that is about 20% higher.
Furthermore, since he now faces a higher wage rate, he engages in more on the job training. Consequently, we need to re-calculate his optimal profile for human capital investment. The resulting wage ratio turns out to be given by

\[
\left(\frac{u_{HS}^{Mig}}{u_{HS}^{Res}} \right)_{Age=30} = 1.34.
\]

Case 2: Migration Expected: Suppose instead that migration is decided upon at birth. In other words since the individual knows with certainty that he will migrate at age 21, the relevant wage rate is, for all practical purposes, the US wage rate. Again as in the previous case, imaging that \(z_h \) is adjusted so as to obtain 12 years of schooling as the optimal choice. (Since the decision problem is almost identical to that of the average American who goes to school for 12 years, \(z_h \) needs to change only slightly) When migration happens at age 21, the individual does not alter much his human capital investment profile since he had anticipated this event. Consequently, his human capital profile looks very similar to the average US high school graduate. The resulting wage ratio then reads

\[
\left(\frac{u_{HS}^{Mig}}{u_{HS}^{Res}} \right)_{Age=30} = 1.93.
\]

The two extremes give us bounds between which the data should lie and rather remarkably, the data does indeed lie in between. The fact that the data point lies closer to our lower bound suggests that individuals expect migration to take place at an age closer to age 21 than age 0.\(^{34}\)

Overall, we conclude that the evidence on immigrant income lends support to the view that at least some of the differences in output per worker are driven by differences in the quality of human capital.\(^{35}\)

\(^{34}\)If the potential Mexican immigrant “learns” at age 18 that he will migrate to the U.S. at age 21 (and therefore starts adjusting his human capital correspondingly), the model predicts the wage differential at age 30 exactly at 43%.

\(^{35}\)In our discussion we completely ignored the impact of differences in languages and learning.
7 Conclusion

The Neoclassical framework has been used in a variety of contexts. In this paper, we show that an extended Neoclassical convex model that incorporates a human capital sector is capable of generating large differences in the stocks of human capital with these differences arising out of small differences in TFP. Our results show that human capital has a central role in determining the wealth of nations. The novelty is that the framework that we use implies that the quality of human capital varies systematically with the level of development. The model is quite successful in capturing the large variation in levels of schooling across countries and is also consistent with the cross-country evidence on rates of return, as well the behavior of earnings of immigrants. The model also implies that a large fraction of the cross-country differences in output are due to differences in the quality of human capital. To be precise, the typical individual in a poor country not only chooses to acquire fewer years of schooling, he also acquires less human capital per year of schooling.

The conventional wisdom is that cross-country differences in human capital are small and that consequently differences in TFP are large. Hence policies that achieve small changes in TFP cannot have large effects on output per capita. Moreover, using the Mincer approach that takes schooling as exogenous, those models effectively give up on trying to understand the impact of TFP on human capital accumulation. About the host country environment. These are important considerations and a search model or a set-up along the lines of Jovanovic (1979) can also account for steeper age-earnings profiles and lower initial wages. These generalizations are beyond the scope of this paper. For a nice exposition of other theories of of the earnings distribution, see Neal and Rosen (1999).

In addition to the analysis of growth and business cycles (see Cooley (1995) for a summary), the basic models has proven useful in understanding such diverse topics as optimal taxation (Chamley (1986) and Judd (1985)), endogenous fertility (Becker and Barro (1989)), innovation with perfectly competitive markets (Boldrin and Levine (2002)), and the impact that institutions have in prolonging the Great Depression (Cole and Ohanian (2004)).

Very few papers attempt to explain schooling differences across countries - a notable exception is Bils and Klenow (2000b).
We find that, the elasticity of output per worker with respect to TFP is slightly over 9. The model suggests that there are huge payoffs to understanding what explains productivity differences. Thus, in our model, productivity differences play a central role in explaining development.

We also find a significant role for policies that induce demographic change. We estimate that if a country in the lowest decile of the world income distribution was endowed with the demographic characteristics of the representative country in the top decile, output per worker would double.

Naturally, the consideration of capital market imperfections such as binding inter-generational loan markets (which will result in the steady state of the open economy version of the model presented above) will only increase the role played by demographics and further reduce the importance of TFP. In ongoing work, we are studying the impact of a variety of human capital policies in the presence of distortions, as well as the role of endogenously chosen fertility.
8 Appendix

The first order conditions of the income maximization problem given the stock of human capital at age 6, $h(6) = h_E$ are,

\begin{align}
\text{whn } & \leq q\gamma_1 z_h (nh)\gamma_1 x^{\gamma_2}, \quad \text{with equality if } n < 1, \\
x & = q\gamma_2 z_h (nh)\gamma_1 x^{\gamma_2}, \\
\dot{q} & = rq - [q\gamma_1 z_h (nh)\gamma_1 x^{\gamma_2}h^{-1} - \delta_h] - w(1 - n), \\
\dot{h} & = z_h (nh)\gamma_1 x^{\gamma_2} - \delta_h h,
\end{align}

where $a \in [6, R]$, and $q(a)$ is the costate variable. The appropriate transversality condition is $q(R) = 0$.

For simplicity, we prove a series of lemmas that simplify the proof of Proposition 1. It is convenient to define several functions that we will use repeatedly.

Let

$$C_h(z_h, w, r) = \left[\frac{\gamma_2 w^{\gamma_1} z_h}{(r + \delta_h)^\gamma}\right]^{\frac{1}{1 - \gamma}},$$

and

$$m(a) = 1 - e^{-(r + \delta_h)(R - a)}.$$

The following lemma provides a characterization of the solution in the post schooling period.

Lemma 2 Assume that the solution to the income maximization problem is such that $n(a) = 1$ for $a \leq 6 + s$ for some s. Then, given $h(6 + s)$ the solution satisfies, for $a \in [6 + s, R)$,

\begin{align}
x(a) & = \left(\frac{\gamma_2 w}{r + \delta_h}\right) C_h(z_h, w, r) \left[1 - e^{-(r + \delta_h)(R - a)}\right]^{\frac{1}{1 - \gamma}}, \\
h(a) & = e^{-\delta_h(a - 6 - s)}\{h(6 + s) + \frac{C_h(z_h, w, r)}{\delta_h} e^{-\delta_h(6 + s - R)} \\
& \quad \int_{e^{\delta_h(6 + s - R)}}^{e^{\delta_h(a - R)}} (1 - x^{\gamma_2})^{\frac{1}{1 - \gamma}} dx\}, \\
& \quad a \in [6 + s, R),
\end{align}
and
\[q(a) = \frac{w}{r + \delta_h}[1 - e^{-(r+\delta_h)(R-a)}], \quad a \in [6 + s, R]. \] (13)

Proof of Lemma 2. Given that the equations (10) hold (with the first equation at equality), standard algebra (see Ben-Porath, 1967 and Haley, 1976) shows that (13) holds. Using this result in (10b) it follows that
\[x(a) = \left[\gamma_2 \gamma_1 z_h w^{\gamma_2} \right]^{1 - \gamma_1} \left(\frac{\gamma_2 w}{r + \delta_h} \right) \left[1 - e^{-(r+\delta_h)(R-a)} \right]^{1 - \gamma_1}, \]
which is (11). Next substituting (11) and (13) into (10d) one obtains a non-linear non-homogeneous first order ordinary differential equation. Straightforward, but tedious, algebra shows that (12) is a solution to this equation.

The next lemma describes the solution during the schooling period.

Lemma 3 Assume that the solution to the income maximization problem is such that \(n(a) = 1 \) for \(a \leq 6 + s \) for some \(s \). Then, given \(h(6) = h_E \) and \(q(6) = q_E \), the solution satisfies, for \(a \in [6, 6 + s] \),
\[x(a) = (h_E^\gamma q_E^\gamma_2 z_h)^{1 - \gamma_1} e^{\frac{\gamma_2 \delta_h (1 - \gamma_1)}{1 - \gamma}} (a-6), \quad a \in [6, 6 + s] \] (14)
and
\[h(a) = h_E e^{\delta_h (a-6)} \left[1 + \left(h_E^{-(1-\gamma)} q_E^\gamma_2 \gamma_2^\gamma \right) \frac{1 - \gamma_1}{\gamma_2 r + \delta_h (1 - \gamma_1)} \right]^{1 - \gamma_1}, \quad a \in [6, 6 + s] \] (15)

Proof of Lemma 3. From (10b) we obtain that
\[x(a) = (q(a) h(a)^\gamma_1)^{1 - \gamma_2} (\gamma_2 z_h)^{1 - \gamma_2}. \] (16)
Since we are in the region in which the solution is assumed to be at a corner, (10a) implies
\[h(a) \leq \left(\frac{\gamma_1}{w} \right)^{1 - \gamma_2} (\gamma_2^2 z_h)^{1 - \gamma} q(a)^{1 - \gamma}. \] (17)
In order to better characterize the solution we now show that the shadow value of
the total product of human capital in the production of human capital grows at
a constant rate. More precisely, we show that For \(a \in [6, 6 + s] \), \(q(a)h(a)^{\gamma_1} = q_Eh_E^{\gamma_1}e^{[r+\delta_h(1-\gamma_1)](a-6)} \). To see this, let \(M(a) = q(a)h(a)^{\gamma_1} \). Then,

\[
\dot{M}(a) = M(a)\left[\frac{\dot{q}(a)}{q(a)} + \gamma_1 \frac{\dot{h}(a)}{h(a)}\right].
\]

However, it follows from (10c) and (10d) after substituting (16) that

\[
\frac{\dot{h}(a)}{h(a)} = zh(a)^{\gamma_1-1}x(a)^{\gamma_2} - \delta_h, \quad a \in [6, 6 + s)
\]

\[
\frac{\dot{q}(a)}{q(a)} = r + \delta_h - \gamma_2 z_h h(a)^{\gamma_1-1}x(a)^{\gamma_2}, \quad a \in [6, 6 + s).
\]

Thus,

\[
\frac{\dot{q}(a)}{q(a)} + \gamma_1 \frac{\dot{h}(a)}{h(a)} = r + \delta_h (1 - \gamma_1).
\]

The function \(M(a) \) satisfies the first order ordinary differential equation

\[
\dot{M}(a) = M(a)[r + \delta_h (1 - \gamma_1)]
\]

whose solution is

\[
M(a) = M(6)e^{[r+\delta_h(1-\gamma_1)](a-6)}
\]

which establishes the desired result.

Using this result, the level of expenditures during the schooling period is given by

\[
x(a) = (h_E^{\gamma_1}q_E^{\gamma_2}z_h)^{\frac{1}{\gamma_1-\gamma_2}} e^{\frac{r+\delta_h(1-\gamma_1)}{(1-\gamma_2)}(a-6)}, \quad a \in [6, 6 + s)
\]

Substituting this expression in the law of motion for \(h(a) \) (equation (10d), the equi-
librium level of human capital satisfies the following first order non-linear, non-
homogeneous, ordinary differential equation

\[
\dot{h}(a) = (h_E^{\gamma_1}\gamma_2q_E^{\gamma_2}z_h)^{\frac{1}{\gamma_1-\gamma_2}} e^{\frac{\gamma_2(r+\delta_h(1-\gamma_1))}{(1-\gamma_2)}(a-6)}h(a)^{\gamma_1} - \delta_h h(a).
\]

It can be verified, by direct differentiation, that (15) is a solution. \(\blacksquare \)
The next lemma describes the joint determination, given the age 6 level of human capital \(h_E \), of the length of the schooling period, \(s \), and the age 6 shadow price of human capital, \(q_E \).

Lemma 4 Given \(h_E \), the optimal shadow price of human capital at age 6, \(q_E \), and the length of the schooling period, \(s \), are given by the solution to the following two equations

\[
q_E = \left[\frac{\gamma_1^{(1-\gamma_2)} \gamma_2^{1-\gamma_2} z_h^{\gamma_1 w (1-\gamma_1)(1-\gamma_2)}}{(r + \delta_h)^{(1-\gamma_2)}} \right]^{\frac{1}{1-\gamma}} h_E^{-\gamma_1} \tag{18}
\]

\[
e^{-r+\delta_h(1-\gamma_1)s} m(s+6)^{\frac{1-\gamma_2}{1-\gamma}},
\]

and

\[
q_E^{\frac{\gamma_2}{1-\gamma_2}} h_E^{\frac{1}{1-\gamma_2}} e^{-\delta_h(1-\gamma_1)s} \left(\frac{(1-\gamma_1)(1-\gamma_2)}{\gamma_2 r + \delta_h(1-\gamma_1)} \right) (\gamma_2 z_h) \frac{1}{1-\gamma_2} \tag{19}
\]

\[
\left[e^{\frac{\gamma_2 r + \delta_h(1-\gamma_1)}{1-\gamma_2} s} - 1 \right] + h_E^{-\gamma_1} e^{-\delta_h(1-\gamma_1)s}
\]

\[
= \left(\frac{\gamma_1^{(1-\gamma_2)} \gamma_2}{(r + \delta_h)} \right)^{\frac{1-\gamma_1}{1-\gamma}} (z_h w^{\gamma_2})^{\frac{1-\gamma_1}{1-\gamma}} \left[m(s+6) \right]^{\frac{1-\gamma_1}{1-\gamma}}.
\]

Proof of Lemma 4. To prove this result, it is convenient to summarize some of the properties of the optimal path of human capital. For given values of \((q_E, h_E, s)\) the optimal level of human capital satisfies

\[
h(a) = h_E e^{-\delta_h(a-6)} \left[1 + (h_E^{(1-\gamma)} q_E^{\gamma_2} z_h^{\gamma_1 w (1-\gamma_1)(1-\gamma_2)}) \frac{1}{1-\gamma_2} \frac{(1-\gamma_1)(1-\gamma_2)}{\gamma_2 r + \delta_h(1-\gamma_1)} \right]^{\frac{1}{1-\gamma_1}} \tag{20}
\]

\[
\left(e^{\frac{\gamma_2 r + \delta_h(1-\gamma_1)}{1-\gamma_2} (a-6)} - 1 \right)^{\frac{1}{1-\gamma_1}}, \quad a \in [6, 6+s)
\]

\[
h(a) = e^{-\delta_h(a-s-6)} \left\{ h(6+s) + \frac{C_h(z_h, w, r)}{\delta_h} e^{-\delta_h(6+s-R)} \right\}
\]

\[
\int_{e^{\delta_h(6+s-R)}} e^{\delta_h(a-R)} \left(1 - x \frac{r+\delta_h}{\gamma} \right)^{\frac{1}{1-\gamma}} dx, \quad a \in [6+s, R).
\]

Moreover, at age 6 + s, (17) must hold at equality. Thus,

\[
h(6+s) = \left(\frac{\gamma_1}{w} \right)^{\frac{1-\gamma}{1-\gamma_1}} (\gamma_2 z_h)^{\frac{1}{1-\gamma}} q(6+s)^{\frac{1}{1-\gamma}}.
\]
Using the result in Lemma 3 in the previous equation, it follows that

\[q(6 + s) = \frac{(h_E q_E) \gamma_1^{\frac{1 - \gamma_1}{1 - \gamma_2}} e^{\frac{1 - \gamma_1}{1 - \gamma_2} (r + \delta_h (1 - \gamma_1))(6 + s)}}{(\frac{\gamma_1}{w})^{\gamma_1} (\gamma_2^{\gamma_2} z_h)^{\frac{1 - \gamma_1}{1 - \gamma_2}}} . \]

(22)

Since

\[q(6 + s) = \frac{w}{r + \delta_h} [1 - e^{-(r + \delta_h)(R - s - 6)}], \]

it follows that

\[q_E = \left[\frac{\gamma_1^{\gamma_1(1 - \gamma_2)} \gamma_2^{\gamma_2 z_h^{\gamma_1}} w^{(1 - \gamma_1)} (1 - \gamma_2)}{(r + \delta_h)^{(1 - \gamma_2)}} \right]^{\frac{1}{1 - \gamma}} h_E^{-\gamma_1} e^{-(r + \delta_h (1 - \gamma_1)) s m (s + 6)^{\frac{1 - \gamma_2}{1 - \gamma}}}, \]

which is (18). Next, using (20) evaluated at \(a = 6 + s \), and (17) at equality (and substituting out \(q(6 + s) \)) using either one of the previous expressions we obtain (19).

We now discuss the optimal choice of \(h_E \). Since \(q_E \) is the shadow price of an additional unit of human capital at age 6, the household chooses \(x_E \) to solve

\[\max q_E h_B x_E^{\nu} - x_E. \]

The solution is

\[h_E = v^{\frac{\nu}{1 - \nu}} h_B^{\frac{1}{1 - \nu}} q_E^{\frac{\nu}{1 - \nu}} . \]

(23)

Proof of Proposition 1. Uniqueness of a solution to the income maximization problem follows from the fact that the objective function is linear and, given \(\gamma < 1 \), the constraint set is strictly convex. Even though existence can be established more generally, in what follows we construct the solution. To this end, we first describe the determination of years of schooling. Combining (18) and (19) it follows that

\[h_E = e^{\delta_h s m (s + 6)^{\frac{1 - \gamma_1}{1 - \gamma_2}} (z_h w^{\gamma_2})^{\frac{1}{1 - \gamma}} \left(\frac{\gamma_2^{\gamma_2 z_h^{\gamma_1}} w^{(1 - \gamma_1)} (1 - \gamma_2)}{r + \delta_h} \right)^{\frac{1}{1 - \gamma}} h_E^{-\gamma_1} e^{-(r + \delta_h (1 - \gamma_1)) s m (s + 6)^{\frac{1 - \gamma_2}{1 - \gamma}}}} . \]

(24)
Next, using (18) in (23), \(h_E \) must satisfy
\[
\frac{1}{h_B} \frac{1}{v^{1/(1-\gamma)}} (\frac{\gamma_1^{(1-\gamma_2)} \gamma_2^{1/(1-\gamma_1)}}{(r + \delta_h)^{1/(1-\gamma)}})
\]
\[
(z_h^{\gamma_1} w^{(1-\gamma_1)} (1-\gamma_2)) \left(\frac{\gamma_1^{(1-\gamma_2)} \gamma_2^{1/(1-\gamma_1)}}{(r + \delta_h)^{1/(1-\gamma)}} \right)^{1/(1-\gamma)} m(s + 6)^{1/(1-\gamma)} (1-\gamma) \right).
\]

Finally, (24) and (25) imply that the number of years of schooling, \(s \), satisfies
\[
m(s + 6)^{1-v(2-\gamma)} e^{(1-\gamma)(\delta_h + rv)s}
\]
\[
\left[1 - \frac{r + \delta_h (1 - \gamma_1)(1 - \gamma_2)}{\gamma_1 \gamma_2 r + \delta_h (1 - \gamma_1)} \right]^{1/(1-\gamma)} \left(\frac{\gamma_2^{1/(1-\gamma_2)}}{r + \delta_h} \right)^{1/(1-\gamma)} \left(\frac{\gamma_2^{1/(1-\gamma_2)}}{r + \delta_h} \right)^{-1/(1-\gamma)}.
\]

As in the statement of the proposition, let the left hand side of (26) be labeled \(F(s) \). Then, an interior solution requires that \(F(0) > 0 \), or,
\[
m(6)^{1-v(2-\gamma)} > \frac{h_B^{1-\gamma}}{z_h^{1-v} w^{\gamma_2-v(1-\gamma_1)}} \left(\frac{\gamma_2^{1/(1-\gamma_2)}}{r + \delta_h} \right)^{1/(1-\gamma)} \left(\frac{\gamma_2^{1/(1-\gamma_2)}}{r + \delta_h} \right)^{-1/(1-\gamma)}.
\]

Inspection of the function \(F(s) \) shows that there exists a unique value of \(s \), say \(\bar{s} \), such that \(F(s) > 0 \), for \(s < \bar{s} \), and \(F(s) \leq 0 \), for \(s \geq \bar{s} \). It is clear that \(\bar{s} < R - 6 \). Hence, the function \(F(s) \) must intersect the right hand side of (26) from above. The point of intersection is the unique value of \(s \) that solves the problem.

It is convenient to collect a full description of the solution as a function of aggregate variables and the level of schooling, \(s \).

Solution to the Income Maximization Problem It follows from (10a), and the equilibrium values of the other endogenous variables, the time allocated to human capital formation is 1 for \(a \in [6, 6 + s] \), and
\[
n(a) = \frac{m(a)^{1/(1-\gamma)}}{e^{-\delta_h(a-s-6)} m(6 + s)^{1/(1-\gamma)}} + \frac{(r+\delta_h)^{1-\gamma}}{\gamma_1 \delta_h} \int e^{\delta_h(a-s-6)} (1 - x^{(a-s-\gamma_1)})^{1/(1-\gamma)} dx.
\]
for $a \in [6 + s, R]$.

The amount of market goods allocated to the production of human capital is given by

$$
x(a) = \left(\frac{\gamma_2 w}{r + \delta_h} \right) C_h(z_h, w, r) m(6 + s)^{\frac{1}{1 - \gamma}} e^{\frac{r + \delta_h (1 - \gamma_1)}{(1 - \gamma_2)} (a - s - 6)}, \quad a \in [6, 6 + s),
$$

(29)

$$
x(a) = \left(\frac{\gamma_2 w}{r + \delta_h} \right) C_h(z_h, w, r) m(a)^{\frac{1}{1 - \gamma}}, \quad a \in [6 + s, R).
$$

(30)

The level of human capital of an individual of age a in the post-schooling period (i.e. $a \geq 6 + s$) is given by

$$
h(a) = C_h(z_h, w, r) \{ e^{-\delta_h (a - s - 6)} \frac{\gamma_1}{r + \delta_h} m(6 + s)^{\frac{1}{1 - \gamma}} + \frac{e^{-\delta_h (a - R)} }{\delta_h} \int_{e^{\delta_h (a - s - R)}}^{e^{\delta_h (6 + s - R)}} (1 - x) \frac{1}{1 - \gamma} dx \}, \quad a \in [6 + s, R).
$$

(31)

The stock of human capital at age 6, h_E, is

$$
h_E = v^w h_B \left[\frac{\gamma_1 (1 - \gamma_2) \gamma_2 \gamma_1 \gamma_2 z_h \gamma_1 w (1 - \gamma_1)(1 - \gamma_2)}{(r + \delta_h)^{(1 - \gamma_2)}} \right]^{\frac{v}{1 - \gamma}}
$$

$$
e^{-v (r + \delta_h (1 - \gamma_1)) s} m(6 + s)^{\frac{v (1 - \gamma_2)}{1 - \gamma}}
$$

(32)
References

